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ABSTRACT

The upper bound of 0.126 on the maximum demographically possible annual growth rate for humpback whales that has standardly been imposed
on recent applications of age-aggregated assessment models for this species in the IWC Scientific Committee, is based on an analysis that assumes
steady age structure. It is conceivable that transient age-structure effects could admit greater population growth rates for short periods than suggested
by such a bound. This possibility is addressed by developing an age-structured population model in which possible density dependent changes in
pregnancy rate, age at first parturition and natural mortality are modelled explicitly, and allowance is made for the possibility of natural mortality
increasing at older ages. The model is applied to the case of the west Australian humpback whale population (Breeding Stock D), for which breeding
ground surveys over the 1982–1994 period provide a point estimate of 0.10 for the annual population growth rate. Results based upon the breeding
population survey estimate of abundance of 10,032 in 1999 suggest that 0.12 is the maximum demographically feasible annual rate of increase for
this stock over 1982–1994 if it is a closed population. This result is based on essentially the same parameter choices as led to the earlier r = 0.126
bound, i.e. that in the limit of low population size the age at first parturition approaches five years from above, the annual pregnancy rate 0.5 from
below, and the annual natural mortality rate 0.01 from above. Transient effects do not appear able to reconcile the observed rate of increase with
less extreme values of demographic parameters than led to the previously imposed upper bound of 0.126 on the maximum possible annual growth
rate. Although use of extreme values reported for demographic parameters for Northern Hemisphere humpback whale populations, rather than those
considered here, would reduce this suggested maximum rate of 0.12, the conclusion that transient effects have a very limited impact on observed
population growth rates would be unlikely to change.
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Expressed another way, such effects might allow high point
estimates of population growth rate to be reconciled with less
extreme values of demographic parameters.

The purpose of this paper is to investigate this possibility
for the specific case of the west Australian humpback whale
population (Breeding Stock D). Results from five breeding
ground surveys of this population over the period 1982–94
(IWC, 1996) suggest an annual increase rate (the slope
parameter from a log-linear regression against year) of 0.10
(95% CI: 0.03–0.18). This paper explicitly models possible
density dependent changes in various biological parameters
to determine to what extent this estimate is consistent with
the feasible behaviour of a closed population of humpback
whales.

DATA

The historic catch data used for these analyses are as agreed
at a recent Southern Hemisphere humpback whale workshop
(IWC, 2011). Two series are considered, the ‘Core’ and the
‘Fringe’ series (see Fig. 1), corresponding to different
assumptions for the allocation of catches made in high
latitude (south of 40°S) feeding areas among breeding stocks
(Table 1). The ‘Core’ series makes the conservative
assumption that only catches between 80° and 100°E come
from Breeding Stock D, whereas the ‘Fringe’ series reflects
the alternative extreme including all such catches between
50° and 130°E.

METHODS

The age-structured population model used for these
computations is described in detail in the Appendix. For
simplicity, sexes are not distinguished. 
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INTRODUCTION

Considerable debate has arisen over the extent to which the
population growth rates suggested by time series of survey
estimates of abundance for various South Hemisphere
humpback whale populations are consistent with the bounds
imposed by the species’ demographics. More specifically,
the upper bound on the maximum per capita annual growth
rate, r, of 0.126 imposed on recent age aggregated model
assessments of these populations in the IWC Scientific
Committee has been questioned as perhaps too high (IWC,
2011).

The origin of this bound is calculations by Brandão et al.
(1999), discussed further in Clapham et al. (2001), which
relate population growth rates to biological parameter values.
Essentially the higher the pregnancy rate (shorter the calving
interval), the greater the annual survival rate and the lower
the age at first parturition, then the higher the growth rate
that the population can attain. The value of 0.126 selected as
a bound corresponds to the following choices regarded as
‘pushing the limits’ for plausible values of biological
parameters for humpback whales:

ρ (annual pregnancy rate) = 0.5;
S (annual survival rate) = 0.99;
amat (age at first parturition) = 5 yrs.

The questioning of the r = 0.126 bound in IWC (2011) arose
primarily because at least some of these values were
considered too extreme on the basis of estimates from
various humpback whale populations. However, the
calculations of Brandão et al. (1999) are based upon the
assumption of a steady age structure. It is conceivable that
over short periods of time (typically 1–2 decades), transient
effects could lead to the attainment of higher population
growth rates than indicated by the results of that paper.



The model is ‘fit’ to the data by adjusting the (initial)
carrying capacity K so that the population’s trajectory hits a
target total (1+, i.e. survey is taken to count all animals of
age 1 and above, so that only calves are excluded) population
of 10,032 in the year 1999, as estimated from surveys of the
breeding grounds (Paxton et al., 2011).

The selectivity ogive for past catches is generally taken to
be knife-edge at age ar = 4 (see Table 1). However, for some
of the models age structure effects lead to an inability to hit
the target value in 1999 because of extinction. In such cases,
the age-at-first capture (ar) was reduced to two years to avoid
this difficulty.

For a ‘reference case’ the maximum possible pregnancy
rate for the population (ρ

max
) is taken to be 0.5, corresponding

to a minimum possible calving interval of two years. This

applies in the limit of very low population size (so that values
observed would be less than this). For an illustrative
reference case (see Table 2), pregnancy rate is assumed to be
the only (linearly) density dependent demographic
parameter, decreasing to ρ

min
= 0.1 when the population is at

carrying capacity. Other biological parameters for this
reference case are taken to be fixed (density independent);
age at first parturition amat = 5 years and an annual natural
mortality rate M = 0.03 yr–1.

Sensitivity to changes in these assumptions is then
examined, first for single factors, and then for these factors
in combination. Initially four factors are considered:

(A) Density dependence (linear) in the age at first
parturition, first with amat

max
= 10;

(B) Lower values for natural mortality;
(C) Nonlinear density dependence for ρ and amat reflected

by the parameter μ (see Appendix equations A.14 and
A.15); note that μ = 1 reflects linear dependence, and μ
> 1 means that density dependent effects do not come
into play as rapidly when the population grows from a
low level, so that high growth rates can be sustained
through to larger population sizes;

(D) Density dependence (linear) in natural mortality
(Appendix equation A.16).

Not all combinations of parameter values are feasible. The
condition of a steady population at carrying capacity K leads
to restrictions on the value of natural mortality for the first
year (M

0
). Clearly M

0
cannot be negative. The computations

reported below insist further that always M
0

≥ M
1

where M
1

is the natural mortality of age 1 humpback whales (which is
identical to that of all older humpbacks for scenarios without
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Table 1

Fixed parameters in the model for the reference case model and variants 2a-
4d (see text).

Parameter                                                                                            Value

ar                                                                                                         4 yrs*
target year (y)                                                                                      1999
target population size (Ny

T)                                                                 10,032
ρmax                                                                                                        0.5

*The minimum legal length for humpback whale catches from 1950 to 1962
was 35ft, which compares with lengths at maturity of 39.5ft for females and
38ft for males (Chittleborough, 1965). Chittleborough also reports the
immature fraction of the catch varying from 18-56% for females and 3-51%
for males. This suggests a typical age-at-first capture (ar) slightly less than
the age-at-maturity. Given that this paper considers the age-at-first-
parturition to range between 5 and 10 years, a choice of ar=4 does not seem
unreasonable.

Fig. 1. Catch series for Breeding Stock D humpback whales for the Fringe (above) and Core (below) catch allocation hypotheses
(IWC, 2011).



age dependence in M) (see Appendix equations A.11 and
A.12 and associated text).

The possibility that M increases at larger ages is
implemented through equation A.13. Potentially this could
introduce temporary high growth rates if the population for a
time includes an over-representation of younger animals past
the age at first parturition as it recovers from heavy depletion.

Other factors investigated are alternative target population
levels and a change in carrying capacity. The alternative
levels are: 31,750 for 2003 from JARPA surveys (Matsuoka
et al., 2011); and 17,959 for 1997 from the IDCR surveys
(Branch, 2011).

An increase in K over the period 1930 to 1960 is
considered as a manifestation of possible competitive release
(as regards utilisation of krill) arising from the major
reduction of blue and fin whales over that period as a result
of harvesting.

RESULTS AND DISCUSSION

Table 2 lists the specifications of the reference case and other
models implemented for Breeding Stock D, together with
shortened names for each for ease of reference. It also lists
the value of M

0
for each model, indicating cases where the

M
0

≥ M
1

constraint has come into play.
Results are shown in Table 3 as annual rates of population

growth for each model for three periods: the first five (1968–
72) and first ten (1968–77) years after catching ceased (these
are the periods where growth rates might be expected to be
highest as the population is at its lowest level), and the 1982–
1994 period over which breeding area surveys lead to an
annual rate of increase estimate of 0.10.

Immediately evident from Table 3 is that there is very little
difference between results for the Core and the Fringe catch
allocation hypotheses. Hence the discussion that follows
focuses on results for the Fringe case only.

For virtually all the models considered, the rate of
population increase over the first ten years since catches
ceased is greater than that over the first five years (the
exceptions are for the higher JARPA and IDCR survey based
target population sizes). The primary reason for this is likely
the time lag until calves reach the age at which they can
themselves reproduce and add to the population. In most
cases increase rates over 1982–94 are less than those over
the first ten years since catches ceased. In cases where this
is not so (i.e. transient effects are sufficient to compensate
for the opposite impact from density dependence), the
differences are marginal. Further discussion focuses on the
1982–94 rates only, as this is the period for which an estimate
is available from the survey series.

The reference case reflects an annual population increase
rate of 0.070 over 1982–94. Density dependence in the age
at first parturition (amat ranging from 5 to 10 years) and in
the natural mortality M (ranging from 0.02 to 0.03 yr–1) each
separately increase this by about 0.01, as does nonlinearity
in the density dependence (μ changed from 1, corresponding
to linear dependence, to 3). The fact that lowering M from
0.03 to 0.02 in the absence of density dependence in M leads
to a drop in the increase rate may seem surprising; it arises
from the fact that balancing births and deaths at carrying
capacity given a lower M value, requires an increase in M

0
,

which in turn reduces the rate at which the population can
grow when reduced in abundance.

All of these changes together (model 3a) see the annual
increase rate raised to 0.10 (which coincidentally happens to
be the point estimate from the observations). If the extent to
which M can change with density is maximised subject to
the constraint that M

0
> M (model 3b), the rate increases to

0.11. Finally if more extreme (but not impossible)
ranges/values are used (amat: 5 to 12; μ = 5; M : 0.01 to 0.032
– model 3c), a rate of 0.12 can be realised. Fig. 2 illustrates
the population trajectories for a number of these cases.
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Table 2

Description of model variants and how they are referenced in the paper. The model indicated in brackets ( ) refers to the model of which the model under
consideration is a variant; under description, what has been changed in the model under consideration is shown underlined. See the Appendix for detailed
definitions of the symbols. The value calculated for natural mortality for the first year of life (M

0
) (see equations A.11 and A.12) is also given, together with

an asterisk (*) if it is limited by the constraint M
0

> M
1
.

Model                         Name                                                                                                   Description                                                                                M
0

1                   Reference case                           amat
max

= 5; ρmin = 0.1; μ = 1; Mm
min = Mm

max = 0.03                                                                                                0.348

2a (ref)          amat
max

= 10                                     amat
max

= 10; ρmin = 0.1; μ = 1; Mm
min = Mm

max = 0.03                                                                                              0.188

2b (ref)         Mm = 0.02                                   amat
max

= 5; ρmin = 0.1; μ = 1; Mm
min = Mm

max = 0.02                                                                                                0.688

2c (ref)          μ = 3                                           amat
max

= 5; ρmin = 0.1; μ = 3; Mm
min = Mm

max = 0.03                                                                                                0.348

2d (ref)         Mm: 0.03 → 0.02                        amat
max

= 5; ρmin = 0.1; μ = 1; Mm
min = 0.02; Mm

max = 0.03 (i.e. Mm density dependent)                                          0.348

3a (ref)          All changes                                amat
max

= 10; ρmin = 0.1; μ = 3; Mm
min = 0.02; Mm

max = 0.03                                                                                    0.188

3b (3a)          3a + max Mm decr.                      amat
max

= 10; ρmin = 0.1; μ = 3; Mm
min = 0.02; Mm

max = 0.034 (i.e. maximal Mm density dependence possible)      0.050

3c (3b)          3b + extreme values                   amat
max

= 12; ρmin = 0.1; μ = 5; Mm
min = 0.01; Mm

max = 0.032                                                                                   0.051

4ai (ref)        Ref – M incr. with age               amat
max

= 5; ρmin = 0.1; μ = 1; Mm
min = Mm

max = 0.03; Mh – Mm = 0.05; a2 = 30; a3 = 40                                          0.118

4aii (ref)       Ref – max M incr. with age       amat
max

= 5; ρmin = 0.1; μ = 1; Mm
min = Mm

max = 0.03; Mh – Mm = 0.05; a2 = 23; a3 = 33                                          0.038

4bi (3a)         3a – M incr. with age                 amat
max

= 10; ρmin = 0.1; μ = 3; Mm
min = 0.02; Mm

max = 0.03; Mh – Mm = 0.02; a2 = 30; a3 = 40                               0.039

4bii (3a)        3a – max M incr. with age         amat
max

= 10; ρmin = 0.1; μ = 3; Mm
min = 0.02; Mm

max = 0.03; Mh – Mm = 0.02; a2 = 29; a3 = 39                               0.032

4c (3b)          3b – M incr. with age                 amat
max

= 10; ρmin = 0.1; μ = 3; Mm
min = 0.02; Mm

max = 0.0302; Mh – Mm = 0.02; a2 = 30; a3 = 40                           0.033

4d (3c)          3c – M incr. with age                 amat
max

= 12; ρmin = 0.1; μ = 5; Mm
min = 0.01; Mm

max = 0.028; Mh – Mm = 0.02; a2 = 30; a3 = 40                            0.028*

5a (3c)          3c + preg = 0.6                           amat
max

= 12; ρmin = 0.1; μ = 5; Mm
min = 0.01; Mm

max = 0.032; ρmax = 0.6                                                                  0.051

6ai                Ref – 17,959 target                    amat
max

= 5; ρmin = 0.1; μ = 1; Mm
min = Mm

max = 0.03; NT
1997

= 17,959                                                                        0.348

6aii               Ref – 31,750 target                    amat
max

= 5; ρmin = 0.1; μ = 1; Mm
min = Mm

max = 0.03; NT
2003

= 31,750                                                                        0.348

6bi                3a – 17,959 target                      amat
max

= 10; ρmin = 0.1; μ = 3; Mm
min = 0.02; Mm

max = 0.03; NT
1997

= 17,959                                                            0.188

6bii               3a – 31,750 target                      amat
max

= 10; ρmin = 0.1; μ = 3; Mm
min = 0.02; Mm

max = 0.03; NT
2003

= 31,750                                                            0.188

7bi                6bi + K* = 1.5K                          amat
max

= 10; ρmin = 0.1; μ = 3; Mm
min = 0.02; Mm

max = 0.03; NT
1997

= 17,959; K* = 1.5K                                           0.188

7bii               6bii + K* = 2K                            amat
max

= 10; ρmin = 0.1; μ = 3; Mm
min = 0.02; Mm

max = 0.03; NT
2003

= 31,750; K* = 2K                                              0.188
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Table 3

Annual rates of increase for the model variants considered. The periods considered are the first five (1968–72) and ten (1968–77) years after catches dropped
to zero, and then the 1982–1994 period over which a relative abundance index is available for the breeding grounds which indicates an annual increase rate of
0.101 (95% CI: [0.028; 0.175]). ‘Maximum’ gives the maximum steady growth rate possible given the biological parameter values for the model in question.
Models marked with an asterisk were fitted with age-at-first capture (ar) of 2 rather than 4 years for reasons explained in the text. A double asterisk indicates
that the change in the value of this parameter applies only to the Fringe catch allocations.

                                                                                                                Core                                                                                  Fringe

Model                   Name                                                68–72              68–77              82–94                 68–72              68–77              82–94            Maximum

1                            Reference case                                  0.076               0.076               0.066                  0.075               0.077               0.070                 0.081
2a (ref)                  amat

max
= 10                                            0.087               0.085               0.069                  0.086               0.087               0.075                 0.093

2b (ref)                  Mm = 0.02                                          0.062               0.062               0.055                  0.063               0.063               0.058                 0.067
2c (ref)                  μ = 3                                                  0.079               0.080               0.079                  0.078               0.080               0.080                 0.081
2d (ref)                  Mm: 0.03 → 0.02                               0.085               0.085               0.073                  0.084               0.086               0.078                 0.090
3a (ref)*                All changes                                       0.100               0.101               0.098                  0.097               0.100               0.100                 0.102
3b (3a)*                3a + max Mm decr.                            0.110               0.112               0.108                  0.105               0.111               0.110                 0.113
3c (3b)*                3b + extreme values                          0.118               0.120               0.118                  0.111               0.119               0.119                 0.122
4ai (ref)                 Ref – M incr. with age                      0.093               0.094               0.082                  0.091               0.094               0.087                 0.098
4aii (ref)**            Ref – max M incr. with age              0.099               0.100               0.088                  0.098               0.101               0.092                 0.104
4bi (3a)*               3a – M incr. with age                        0.111               0.113               0.110                  0.105               0.111               0.112                 0.114
4bii (3a)*              3a – max M incr. with age                0.112               0.113               0.110                  0.106               0.112               0.112                 0.114
4c (3b)*                3b – M incr. with age                        0.112               0.113               0.110                  0.105               0.112               0.112                 0.114
4d (3c)*                3c – M incr. with age                        0.120               0.122               0.120                  0.112               0.120               0.121                 0.124
5a (3c)*                 3c + preg = 0.6                                  0.129               0.135               0.134                  0.115               0.132               0.135                 0.138
6ai                         Ref – 17,959 target                                                                                                      0.072               0.071               0.054                 0.081
6aii                        Ref – 31,750 target                                                                                                      0.056               0.052               0.024                 0.081
6bi                         3a – 17,959 target                                                                                                        0.099               0.100               0.085                 0.102
6bii                        3a – 31,750 target                                                                                                        0.037               0.025               0.001                 0.102
7bi                         6bi + K* = 1.5K                                                                                                            0.099               0.101               0.095                 0.102
7bii                        6bii + K* = 2K                                                                                                              0.100               0.101               0.090                 0.102

Fig. 2. Comparison of population trajectories for stock D humpback whales for the reference case model, and variants of this
model in which all the parameters are changed. Trajectories are shown for the whole period since exploitation commenced
(top) and for the 1994–2006 period only (bottom).



If higher natural mortality at larger ages is allowed
(models 4ai and 4aii), the increase rate for the reference case
becomes larger by about 0.02 (see Fig. 3). However, such
higher mortality in combination with more extreme ranges
for the other parameters (model 4d) can achieve only little
extra increase in the growth rate. These increases are limited
essentially because the M

0
> M

1
constraint comes into play

(see Table 3), and precludes more extreme choices for the
Mm

max, a
2

and a
3

parameters.
Constraining the maximum pregnancy rate to 0.5 has an

influential effect. Were annual compared to biennial calvings
sufficiently frequent to increase the average maximum
pregnancy rate from 0.5 to 0.6 (model 5a), the population
annual increase rate could approach 14%.

In most instances with higher target levels for recent
abundance (from JARPA or IDCR surveys – models 6), the
population shows a relatively low rate of increase over 1982
to 1994, essentially because it is estimated to be close to
carrying capacity by the start of that period. However the
fact that the populations are never reduced to a very low level
under some such scenarios (see Fig. 4) raises questions about
their plausibility. This inconsistency can, however, be
resolved if an increase in carrying capacity is postulated
(model 7). An increase of K of 50% or 100% for target levels
of, respectively, 17,959 in 1997 or 31,750 in 2003 sees
annual increase rates back to near 0.10 (Fig. 4).

For all models considered the maximum steady growth
rate possible given the biological parameters for the model

in question is greater than the predicted rate of increase over
1982 to 1994. Thus these analyses provide no indication that
the point estimate of the rate of increase observed can be
reconciled with less extreme values of demographic
parameters than led to the original r = 0.126 upper bound as
a consequence of transient effects.

CONCLUSION

Unless the possibilities (in the limit of low population size)
of an age at first parturition less than five years, or an average
pregnancy rate above 0.5 can be entertained, it seems that
0.12 is about the maximum demographically feasible annual
increase rate for a closed population of Breeding Stock D
humpback whales over the 1982–94 period. Transient effects
do not appear able to reconcile the observed rate of increase
with less extreme values of demographic parameters than led
to the previously imposed upper bound of 0.126 on the
maximum possible annual growth rate1.
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Fig. 3. Comparison of population trajectories for stock D humpback whales for the reference case model, and variants of this model which allow for various
degrees of larger natural mortality at older ages. Trajectories are shown for the whole period since exploitation commenced (top) and for the 1994–2006
period only (bottom).

1 Subsequent to the original presentation of this paper, the IWC Scientific
Committee (IWC, 2007) agreed that it was reasonable to revise down the
upper bound on the maximum annual increase rate from the earlier 0.126 to
0.106, based on extreme values reported for Northern Hemisphere humpback
whale populations for pregnancy rate, age at first parturition and natural
mortality, though noting that the more extreme values still in the limit of very
low population size could not be excluded. It is, however, unlikely that use
of those Northern Hemisphere extreme values rather than those considered
in this paper would change the conclusion that transient effects do not have
an appreciable impact on the population growth rates observed.



Appendix

DETAILS OF THE AGE-STRUCTURED POPULATION MODEL

Population dynamics

                                                              N
y+1,1

= 0.5ρ(Ny
T)e–M0 Ny

m                   y ≥ 0                                                                 (A.1)

                                                              N
y+1,a+1

= (Ny,a – Cy,a)e–Ma                   1 ≤ a ≤ 99                                                         (A.2)
where:

Ny,a is the number of humpback whales of age a in year y,

Cy,a is the number of humpback whales of age a caught in year y,

Ma is the natural mortality rate at age a, 

Ny
T is total population in year y (defined to be one year old and older humpback whales) given by:

N
y

T
= N

y ,a

a=1

100

�  ,
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Fig. 4. Comparison of population trajectories for stock D humpback whales for the ‘3a’ variant of the reference case model with
a target population of 31,750 in 2003, and for this model with the inclusion of a 100% increase in carrying capacity from
1930 to 1960.



Ny
m is the mature population of humpback whales in year y given by:

where:

γ
a

is the fraction of humpback whales of age a that are mature, given by:

(A.3)

where:

amat (Ny
T) is the age at first parturition, as a function of the total population size, given by:

(A.4)

where:

amat
max

is the maximum age at first parturition,

amat
min

is the minimum age at first parturition, and

Ky is the carrying capacity, which can change linearly over the years 1930 to 1960 from K to K*:

(A.5)

ρ(Ny
T) is the pregnancy rate, which depends on the total population size, and given by:

(A.6)

where:

ρmin is the minimum pregnancy rate, and

ρmax is the maximum pregnancy rate.

Note that it is assumed that all humpback whales reaching the age of 100 then immediately die. Given that the only instances
of evidence of whales living beyond 100 is for bowheads, setting 100 as a maximum age seems reasonable.

The number of whales of age a caught in year y is given by:

(A.7)

where:

ar is the age at first capture, and 

Cy is the catch in year y.

i.e. uniform selectivity for ages ar and above is assumed.

The initial numbers at each age a are taken to follow an unexploited equilibrium distribution evaluated as follows:

N
0,a

= λN*a for a = 1, …, 100, (A.8)

where:

(A.9)
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N*
1

= 1, N*
2

= N*
1

e–M
1, N*

3
=N*

2
e–M

2, etc., and (A.10)

K is the (initial) carrying capacity. 

Natural mortality
The natural mortality for the first year of life (M

0
) is calculated by ensuring that the number of calves that reach age one each

year balances the number of deaths (of humpback whales of age one and above) per year when the population is unexploited
(i.e. when N

0
T = K). In this instance the number of such calves is proportional to (taking amat

max
here to be integral):

(A.11)

and the number of deaths is in the same proportion to:

(A.12)
so that M

0
can be computed by equating A.11 to A.12.

The natural mortality for the first year of life (M
0
) is constrained to be greater than the natural mortality of one year olds (M1).

To allow for the possibility of increased natural mortality at older ages, the natural mortality at age is modelled to change
smoothly by:

(A.13)

where:

Mm is the lowest value for natural mortality, and

Mh is the highest value for natural mortality with Mm increasing linearly to Mh over the age range a
2

to a
3
.

When the value for Mh is set the same as that for Mm, natural mortality is independent of age.

Alternative forms of density dependence
Alternative formulations are considered to allow for density dependence in different forms in the calculation of age at first
parturition (amat(Ny

T)), the pregnancy rate (ρ(Ny
T)) and the natural mortality Ma. Equation (A.4) is changed to:

(A.14)

equation (A.6) is changed to:

(A.15)

the lowest value for natural mortality (Mm) in equation (A.13) is changed to:

(A.16)

Fig. A.1 illustrates how different choices for μ affect the dependence of pregnancy rate on population abundance.
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208 BRANDÃO & BUTTERWORTH: DEMOGRAPHIC LIMITATIONS ON GROWTH RATE

Fig. A.1. The variation of pregnancy rate with total population size in
relation to the value of the μ parameter (see equation A.15).


