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ABSTRACT

In this paper, two new methods are presented that enable spatial models o be fitted from line transect data. Building on preliminary work
by Cumberworth er al. (1996} and Hedley et al. (1997), the first method is based on a count model and involves dividing the survey effort
into smalt segments then modelling the number of schools in each segment, In contrast, the second methed uses a model based on the
intervals between detections. Its formulation is derived in detail to obtain the likelihood function for the distances between detections,
cenditional on an estimated detection function. Both models can be fitted using standard statistical software, although variances must be
estimated using computer intensive methods. We apply the methods to data from the 1992/93 IWC/IDCR Antarctic survey of Area III,
fitting generalised additive models {0 obtain estimates of minke whale abundance, using the parametric bootstrap to estimate variance. The
results from fitting these models are compared with the results of a previous analysis by Borchers and Cameron {1993), which used

conventional stratified methods,
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INTRODUCTION

The question of how to achieve one of the long-term research
objectives of the TWC, the assessment and prediction of
environmental change on cetaceans, is summarised in IWC
(2000} as:

Define how spatial and temporal variability in the physical {e.g. sea
surface temperature, salinity, mixed layer depth, upwelling, extent of
ice cover) and biclogical {e.g. prey availability) environment
influence cetacean species in order to determine those processes in
the marine ecosystem which best predict long term changes in
cetacean distribution, abundance, stock structure, extent and timing
of migratiens and fifness.

The conventional stratified analyses used to estimate the
density of minke whales from IWC surveys (e.g. see Haw,
1693; IWC, 1994) are unsuitable for quantifying the
relationships between the distribution of cetaceans, their
prey and physical variables because they necessarily involve
estimation at very low spatial resolution and have only a
limited ability to relate density to physical variables. In
contrast, spatial models are already widely applied to
wildlife survey data to explain species distribution using
physical variables (e.g. see Osborne and Tigar, 1992;
Buckland and Elston, 1993; Augustin ef al., 1996), and could
in principle be used to model the distribution of a predator
based on the density and location of its prey. This paper
describes two recent methodological developments for
estimating the spatial distribution of wildlife from line
transect data.

MODEL FRAMEWORK

Data collection

In common with conventional line transect surveys, a set of
transects is surveyed within the region of interest. Observers
record the radial distance and angle to the detected ohject, to
enable modelling of perpendicular distances (and hence
estimation of the effective strip width). Factors which can
affect the sightability of objects, such as sea state, should
usually also be recorded. The geographical location of the
observation platform is logged at regular intervals, and is
also recorded when a sighting is made. Other spatial
information, for example, bottom depth and sea surface
temperature, may be recorded at regular intervals; such

information, if also available throughout the survey region,
could be included as one or more predictor variables in a
model. Unlike conventional line transect analyses, there is
no requirement that transect lines should be located at
random with respect to the distribution of objects, although
they should provide coverage throughout the region of
interest,

Using line fransect count data to formulate a spatial
model

In this formulation, the transects covered during a survey are
divided into small sampling units or ‘segments’, such that
the sighting conditions and geographic location do not
change appreciably within a segment. The estimated number
of groups (e.g. pods, schools, herds) in segment i, N; is
calculated using the Horvitz-Thompson estimator (Horvitz
and Thompson, 1952) as:

n;
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where #; is the number of detected groups in the /™ segment,

and p; is the estimated probability of detection of the j®
detected school in segment /.

If the ‘confirmed’ group size', Sy, is available for every
detected group, the estimated number of animals in segment
i, M is:
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In conventional line transect analyses, the estimated
detection probabilities depend only on perpendicular
distance from the transect line. The Horvitz-Thompson
estimator provides a framework for incorporating other
explanatory variables (such as sea state or group size) which
may affect detection probability. In the case of two-platform
survey data, the py; may be estimated using logistic
regression as in Borchers ef al. (1998). In the case of single
platform data, the covariable information may be
incorporated by adopting a full likelihood approach (Ramsey

U A ‘confirmed’ group is one whose size has been determined with a
figh degree of confidence.
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et al., 1987, Cooke and Leaper, 1998), or by using a
‘covariate adjustment” method (Beavers and Ramsey, 1998),
in which a log-linear regression is carried out on the
observed perpendicular distances to modify the width (or in
point transects, the radius} of the effective search area
dependent upon the sighting conditions.

Having estimated the response variate, a spatial model is
then fitted. This may take the form of either a Generalised
Linear Model (GLM; McCullagh and Nelder, 1989) or a
Generalised Additive Model {GAM; Hastie and Tibshirani,
1990); here we detail the latter.

Suppose the response is N; the number of groups in the ith
segment, and let z; denote the value of the kth spatial
covariable in the ith segment. The expected values of the N,
are related to a predictor function of the z; via a link
function. Although the response is derived from count data,
in general the Poisson error distribution will not be
appropriate because of over-dispersion. This is readily
accounted for by specifying an error structure with variance
function proportional, rather than equal to the mean,
Applying a logarithmic link function, the model may be
written

E(N{) = exXp I:ln(a‘,-)+ By + ka(zik ):i
k

where the offset variable «; is the area of the ith segment
{calculated as twice the length of the segment multiplied by
the perpendicular distance at which data were truncated in
that segment}; Oy is a parameter to be estimated (commonly
termed the ‘intercept’); and the f, are smoothed functions of
the spatial covariables. If g;; = p; for all jj=1,...,n, then the
counts in each segment can be modelled directly, with the
probability of detection of a group being incorporated inio
the model via the offset, p,a;, the effective area of the ith
segment.

Using interval data to formulate a spatial model

In this formulation, interval data form the response. These
may be the times or distances (along the transect line)
between successive sightings, or the ‘areas’ between
sightings, where the areas are defined as the distances along
the transect line between sightings multiplied by twice the
effective strip half-width at the given location. In what
follows, we term these three responses ‘waiting time’,
‘waiting distance’ and ‘waiting area’ respectively.

Animal density is not usually constant within a particular
region. It typically varies according to the local environment,
so it is not reasonable to assume that the locations of groups
of animals are well described by a homogeneous planar
Poisson process. It is more likely that the locations of groups
would be better modelled by an inhomogeneous Poisson
process, where the rate of the process (effectively the
expected number of groups per unit area) is allowed to vary
as a function of spatial location. Let this rate be denoted
D(x,y), the density of groups at position (x,y), where the
x-axis is defined (without loss of generality) to be along the
direction of the trackline and the y-axis to be orthogonal to
the trackline. Consider two arbitrary points on the trackline
(x:.0) and (3,0}, separated by a distance / along the line. The
expected number of groups within a strip of length / and
width 2w is:

W
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Suppose that not all groups within the strip are detected, The
expected number of detected groups within the strip is a
function of how many groups are actually present in the strip
and of how detectable they are. Conventional line transect
estimation requires estimation of a detection function, g(y);
in this formulation, g(y) may be thought of as a thinning
function producing the observed process - the locations of
detected animals. Under the additional assumption that the
detection process is independent of the density of groups, the
locations of detected groups within £w of the trackline also
follow an inhomogeneous Poisson process, with rate
D(x,y)g(y). The validity of this assumption is compromised
if detection probability is greater in high density areas. This
situation may occur if observers become more alert in the
presence of sightings, but with appropriate survey protocol,
such as frequently rotating shifts, the effect of this can be
minimised. Thus the expected number of detections in the
strip is given by:

w
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Now let M denote the length of trackline surveyed before a
detection is made, starting from (x;,0). The Cumulative
Density Function (CDF) of M evaluated at {x;+/,0) = (x3,0)
is:

Fu(llxy=PM< x))=1-P(M >11x))

But since M >/ if and only if there were no detections in the
strip, then

F,{I|%) =1~ P(no detections in the strip) (3)
=1-—exp{—Ax,x,,w)]

Thus, we obtain the conditional probability density function
(pdf) of the waiting distance, /, from an arbitrary point
(xlvo):

W
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Suppose that there are n detections. The vessel locations at
each detection are (x;,0) = (x;.;+{;,0), i = 1....,n, which, given
the location of the start of the surveyed trackline, are
uniquely determined by the length of survey effort between
each detection. Denoting the initial position by 4= (x4,0),
the joint likelihood of waiting distances given E is:

f(]rr+l?if1’!11~]1"'7[l l&U) =
PO >4 Ve L E U g W L) FULTE DD

where /| is the distance from &g to the location of the vessel
when the first detection is made; /;, i =2,...,n are the distances
between the vessel locations at the (i-1)th and ith detections;
and 1., is the distance surveyed on effort after the last
detection. PM > .y [LpeodinEo) is simply 1 —
Fus(lyrillnse-dy Eq). Given a vector of spatial parameters 8 for
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the density surface D{x,y) and parameters p for the detection
function g(y), the conditional likelihood £(|&:8,8) is given
by:

L

o0 = ([ ] | Doxi gty

=l Sy
exp|}-2 Ax;, ,x,-,w)] exp[—l(_r,,,x,, +1oa w)]
i=]
The conditional log-likelihood is:

n (e, 0.8) = Y 1n| [ Dexi,yde)dy
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which, given parametric forms for D{(x,y) and g(y), may be
maximised numerically.

In order to compare this derivation with the conventional
line transect estimator (e.g. Buckland ef a/., 1993, pp.37-39),
a ‘flat’ density surface representing the average density
across a stratum must be estimated, so D(x,y) becomes
simply D. Thus, the log-likelihood becomes:

S, = i D [ g()dy |~ DL [ spy

- -3

where L is the total distance surveyed. Differentiating with
respect to D to find the maximum likelihood estimate of
density, D,

din¥ _n_
oD D

L _[ g(y)dy

-

gives the conventional line transect estimate of group
density:

~ n
D=

L _[ gy

-

Using standard software to fit an interval data model
In the previous section, the likelihood function of the
inter-detection distances (waiting distances) was derived and
it was shown that the maximum likelihood estimator of
density was equivalent to the conventional line transect
density estimator under the necessary constraints. We now
describe how interval data can be used to fit a spatial model
within a GAM framework.

We begin with a conceptual model in which the density of
groups and the expected encounter rate remain constant as
the observer travels from one detection to the next, but may
change when a detection occurs. In reality, this is clearly an
implausible model, but it serves as a starting point for a more
appropriate model which must be fitted iteratively. Suppose
that detections occur at (x;.,,0) and (x;,0) where x;=x; | +/;
and assume for simplicity that the effective strip half-width,
I, is a constant. Under these conditions, the CDF given in
Equation (3) becomes:

Full L x, ) =1—exp{—241 D(x;,0}}

i.e. the distances are distributed exponentially, Exp{¢) say,
with ¢ = 2uD(x;,0), The mean of this distribution is 1/¢ and
¢ is the intensity of a homogeneous Poisson process in the
area of length /; and width 2 between (x;,,0) and (x;,0). The
observed density at (x;,0) is 1/2uJ;. The form of the GAM
is

[BU) =00+ Y fiGy)y  i=lin
k

where g is a monotonic differentiable function (the link
function), the f. are smoothed functions of the spatial
covariables, z;, and # is the number of detections. If it is
assumed that the /; are exponentially distributed, then the
gamima distribution, with dispersion parameter set to unity,
is the appropriate error distribution {as this is equivalent to
the exponential distribution). If there is over-dispersion, the
gamma error distribution should be used and the dispersion
parameter estimated. The logarithmic link ensures positive
values of the mean response.

This formulation can only be fitted as a GAM because of
the assumption of constant density between detections. This
is equivalent to assuming a sequence of homogencous
Poisson processes, where the rate of each process may differ,
but is constant between any two consecutive detections,
Standard GAM software cannot be used to fit an
inhomogeneous Poisson process, where the rate is a function
of spatial location. This difficulty is overcome by
implementing an iterative procedure which adjusts the
observed waiting distances to the distances that would have
occurred if the underlying Poisson process was indeed
homogeneous and the density between detections was
constant.

The first step of the iteration is to fit a model to the
observed waiting distances as described above. The adjusted

waiting distances, I, { = 1,...,n satisfy:

14
J D(x,0)dx}

R

=1-expl-2u], D(x;,0)]

I —exp{~21

Taking logarithms, this simplifies to:

Xy
j D(x,0)dx = 1.D(x;.0)

-1

Therefore, the adjusted distances are calculated as:
X+
J D(x,0)dx

1?_ —

' D(x;,0)

that is, the area under the predicted density surface between
detections at (x;.1,0) and (x;,0) is equated to the area of the
rectangle of width /; and height D(x;,0) (Fig. 1).

Xty

Given the fitted model, the integral f D(x,0)dx may be
evaluated numerically. The denoni{flator, D(x;0), 1
calculated as the reciprocal of the ith {itted value multiplied
by the effective strip width, 2u. The model is then refitted to
the adjusted distances yielding an estimate of the density
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surface D(x,y) with smaller bias. The process s repeated,
each time adjusting the waiting distances, until convergence
is reached.

D(x,O)

T T

Yiu  Position along transect line (x) %

Fig. 1. Density on the trackline, D{v,0), detections at x,.; and x;. The
dlstance between detections is shown as [; the '\djusted waiting
distance is known as [;, which is such that the area of the rectangle of
width /;and height D(x;. 0) equals the area under the curve D(x, O) {i.e.
so that the dotted regions are equal in area).

VARIANCE ESTIMATION

The observations of the responses from the two models
described above cannot be assumed to be independent.
However, the likelihoods can still be formulated and model
parameters estimated, but analytic methods will not provide
valid variance estimates if the non-independence is ignored,
Robust estimates of variance may be obtained using an
appropriate resampling technique. An obvious choice is the
non-parametric bootstrap, with transect lines, or perhaps
days, as the sampling units (which are assumed to be
independent). With this technique however, samples are
drawn with replacement, hence each bootstrap resample is
likely to produce reduced spatial coverage compared to the
original survey effort. Two alternative estimators were
considered: the jackknife and the parametric bootstrap. The
jackknife estimator performed favourably compared to the
variance estimate from the conventional line transect
analysis for the count data model, but poorly for the interval
data model. This result was not entirely unexpected,
particularly given the low number of sampling units
(transects) on which the jackknife was based.

The jackknife estimator operates correctly only if the
estimated statistic (say 8) has a locally linear quality (Miller,
1974). Intuitively this means that 8 should exhibit
‘smoothness’, whereby small changes in the data cause only
small changes in the value of the estimated statistic (Efron
and Tibshirani, 1993). The jackknife estimator of abundance
satisfies the smoothness criterion, perhaps explaining why it
performs well in the case of the count data model, despite the
low number of sampling units, Its poor performance in the
case of the interval data model might therefore be better
explained by looking at the structure of the model
formulation itself. In this regard, the interval data may be

thought of as a series of observations indicating some overall
trend in density across a region. In practice, these
observations are likely to be overdispersed, represented by
some clustered observations which are serially correlated.
Miller (1974) notes that the jackknife is rarely successful in
such situations. Therefore in this paper, we discuss the merits
of implementing the parametric bootstrap as a means of
estimating variance from the spatial models.

The parametric bootstrap

Instead of resampling directly from the observations as in the
non-parametric bootstrap, for the parametric bootstrap a
model is fitted to the data from which new data values are
then generated, Unlike the non-parametric bootstrap (and
maost analytical methods), the parametric bootstrap does not
require the assumption of independently and identically
distributed (IID) observations. As noted above, with both the
count data model and the interval data model the
observations are not independent, and in general will not be
identically distributed. We describe an algorithm to generate
parameltric bootstrap resamples, noting that in practice,
suitable models for estimating the pdf for detections are
unlikely to be sufficiently flexible to fully incorporate the
serial correlation between successive observations.

The first step of the parametric bootstrap is to fit the
spatial model to the original data. Density at every point
along the trackline may then be estimated from the fitted
model. The pdf for detections along the line is obtained by
dividing the estimated densities by their total integral along
the line (which is calculated numerically). For each
bootstrap pseudosample, the number of values to be
generated from this pdf is a deviate from the Poisson
distribution with rate E(n), approximated by #, the total
number of detections. A rejection sampling method could be
used 1o generate the values in the resamples. Thus, two
variates from uniform distributions are generated - one
{(representing  the surveyed effort) from a uniform
distribution on (0, total transect length) and another
(representing the variation in density along the transects)
from a uniform distribution on (0, maximum pdf value). The
two uniformly-distributed variates yield a point in two
dimensions which, if it is located beneath the curve given by
the pdf, is accepted in the pseudosample; otherwise it is
rejected. Accepted values are then translated onto the
transect line and their positions are calculated, enabling the
number of schools in each segment (with segment
boundaries remaining the same as for the original data) to be
calculated for the count data model, or waiting distances to
be calculated for the interval data meodel. This simple
implementation has the advantage that observations do not
need to be generated sequentially along the transect line. If
the fitted model is sufficiently flexible to model any
clustering in the data, so that, for example, high pdf values
adequately represent locally high density clusters, then the
implementation, and any consequential inferences, are
entirely valid. If not, then inferences must take account of
any unmodelled serial correlation neglected in the
construction of the psendosamples.

Given the bootstrap samples, the model selected for the
original data is then refitted to obtain density and abundance
estimates from each pseudosample. The sample variances of
these estimates provide bootstrap estimates of the
components of variance of D and N from the spatial
modeiling. The component of variance due to the estimation
of p; in the count data model or effective strip width for the
interval data model must also be incorporated to obtain the
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Table |

Stratum estimates of detection probability, p, of pods within the strip of half-width 1.5 n.miles, and effective
strip half~width, ESW, with cocfficients of variation (calculated using DISTANCE software).

Pooled strata p %CV ESW(nm) %OV
WN and EN 0.742 7.61 1.112 7.61
WS and ES 0.360 15.42 0.540 15.42

overall variance estimates of D and N. We use the delta
method (Seber, 1982, pp.7-9) to combine the components of
variance in the estimation.

APPLICATION OF THE METHODS TO IWC/IDCR
ANTARCTIC MINKE WHALE DATA

In this example, we apply the spatial modelling methods
described above to Independent Observer (I10) mode minke
whale data from the 1992-3 IWC/ADCR Antarctic Survey in
Area II1. Transects covered in this region are shown in Fig,
2, together with locations of sighted pods.

Count data model

Following Borchers and Cameron {19953), a conventional
stratified analysis was conducted in DISTANCE (Laake
ef al., 1993) to estimate the probability of detecting a minke
whale pod within a truncation width w of the trackline. As in
Borchers and Cameron (1995), data were truncated at 1.5
n.miles, and effective strip widths were calculated separately
for the Northern strata (WN and EN) and the Southern strata
(WS and ES). The results are shown in Table 1.

Effort legs were divided into segments of 16 minutes, or
approximately 3 n.miles assuming a vessel speed of 11.5
knots. Therefore, with a truncation distance of 1.5 n.miles,
the sampling units were approximately squares of side 3
n.miles, bisected by the trackline. The estimated number of
minke whale pods in each segment, N; was calculated

according to Equation (1), with p; equal to 0.742 if the
segment was located in one of the Northern strata, and 0.360
if it was in a Southern stratum.

A GAM with a logarithmic link function and
overdispersed Poisson error distribution was fitted to the N;
to obtain a smooth density surface of minke whale pods
throughout Area I (Fig. 4). Possible covariables were
distance from the ice edge (ice}, latitude (/af) and longitude
(fon). Each of these was considered for inclusion in the
model as a cubic smoothing spline with either 8, 4 or 2
degrees of freedom, or as a linear term. An automated
stepwise procedure using a version of Akaike’s Information
Criterion (AIC) that adjusts for overdispersion for model
selection was adopted (Chambers and Hastie, 1993, p.282).
The final model was highly flexible, with all three
covariables selected as smoothed terms with eight degrees of
freedom, and is shown below:

E(N,) = expllog(a;) + 6, +s(ice;,8) +s (lat;,8) +s (lon;,8)),

where as noted previously, the offset variable «; is the area of
the ith segment. The nonlinear form of the dependence of
pod density on the covariables is shown in Fig. 3. In
interpreting the plots in this figure, it is important to
recognise that they show the additional effect of the
covariable being plotied, given that the other (smoothed)
covariables are included in the model. For example, the
second peak in density in the smoothing spline of latitude at
around 62°S does not comrespond to the region of highest
density in Fig, 4 because, as can be seen from the smoothing
spline of distance from the ice edge, densities generally

60°S T 7

62st | \

64°St

66°St

68°SL

70°81

hee.,

et @

0° 10°E

20°E 30°E 40°E

Fig. 2. Realised survey effort in JO mode and minke whale school sightings in
Area III daring the 1992-3 IWC/IDCR Antarctic Survey. Subplot shows the
division of the region into four strata: WN, WS, EN and ES.
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Fig. 3. Shapes of the functional forms for the smoothed covariables used in the count data model example. Zero on the vertical axes corresponds to
no effect of the covariable on the estimated response (here, pod density). The locations of the observations are plotied as small ticks along the

lorizontal axes.

decrease with increasing distance from the ice edge, which
was located considerably further south than (and hence at
large distances from) 62°S during this survey.

Estimates of abundance by stratum are given in Table 2.
Coefficients of variation were estimated using the
parametric bootstrap. The predicted density surface of minke
whale pods, as shown in Fig. 4, is quite well supported by the
observed data, indicating that the model has provided a good
description of the spatial variation in pod density. The
highest density area is located around 66°S, 16°E. However,
a moderately high density patch is also predicted to occur at
around 20°E, just north of 66°S, on the inferstratum
boundary between the WN and WS strata which, since there
were no transects in this region, is not apparent from the
sightings data. It is easy to see from Fig. 3 why high densities
are being predicted here. The middle plot, showing how
density varies with Iongitude, displays a global peak at about
20°E, whilst the top plot, indicates a local peak at around
66°5. These two effects together with relatively high
densities predicted from the distance from ice edge
smoothed combine to produce this patch. (The centre of the
patch is approximately 125 n.miles from the ice edge
boundary). The ‘truth’ is of course unknown in this example,
but the scenario serves to remind us of a possible pitfall when

combining one-dimensional smoothers to produce a
two-dimensional surface. An alternative is to model the
surface directly using a bivariate smoothing function,
although the increase in complexity can lead to difficulties in
interpretation and computation (Hastie and Tibshirani,
1990).

Interval data model

Using the stratum estimates of cffective strip half-width
shown in Table 1, waiting areas were calculated as twice the
estimated effective strip half-width multiplied by the
distance along the trackline between consecutive sightings.
A generalised additive model with a logarithmic link
function was fitted to the estimated waiting areas, assuming
a Gamma error distribution. As for the count data model,
possible covariables were distance from the ice edge,
latitnde and longitude, and again these were considered for
inclusion in the model as cubic smoothing splines with either
8, 4 or 2 degrees of freedom, or as linear terms. Stepwise
automated model selection, based on the AIC (adjusted for
overdispersion), led to the following final model:

E(W;) = exp[8, + s(lat;,8) + s(lon;, 2)] i=l...n
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Fig. 4. Density of minke whale pods in Area III, estimated using the count data model.

where Wi is the estimated waiting area between sighting (/-1)
and sighting i, and #n is the total number of sightings. The
failure to select the term representing the distance from the
ice edge may at first seem counter to @ priori expectations,
but in this case the high flexibility of the smoothed term in
latitude, coupled with the strongly smoothed longitudinal
term, is sufficient to model the spatial variation in density,
The non-linear form of the dependence of the estimaied
waiting areas on these two covariables is shown in Fig. 5, so
for example, the increasing trend with decreasing latitude
seen in the latitude smooth represents a decreasing trend in
density (because expected densities are given by the
reciprocal of the expected waiting areas).

Estimates of abundance by stratum with corresponding
coefficients of variation (estimated using the parametric
bootstrap) are given in Table 2. The predicted density
surface of minke whale pods is shown in Fig. 6.

20°E 30°E 40°F

Discussion

Given the differences between the stratified analysis and the
form of the two spatial methods presented in this paper, the
point estimates of total Area [II abundance are remarkably
similar. Whilst the estimate of abundance in the WN stratum
from the interval data model is higher than the corresponding
estimates from the other two methods, the differences are
small relative to the precision of the estimates. However it
may be that in this case the model is a poor fit to the data, and
influenced by the eleven sightings clustered on the
westernmost transect of the WN straturn, fails to capture the
more expected scenario that density decreases with distance
from the ice edge. Perhaps this highlights the possible
shortcomings associated with reliance on an automated
model selection procedure — an alternative model might well
have been selected had the choice been augmented with
other available tools, such as graphical methods. However,

Table 2

Estimates of abundance of minke whale pods ( [C’_‘} from a conventional stratified analysis (Borchers and Cameron, 1993) and
the two spatial modelling approaches described in this paper. For the spatial models, the CVs were estimated using the

parametric bootstrap {%CVpg).

Stratified analysis

Count data model

Interval data model

~

Stratum N, %CV N, 2%CVg N, 2 CVeg
WN 4,810 40.13 4,621 19.90 6,386 30,52
EN 1,460 49,53 819 28.94 1,058 31,24
WS 7412 25.14 8,413 17.62 0,895 23.04
ES 636 4425 885 25.06 686 29.10
Tatal 14,318 22.99 14,740 16.03 15,025 21.23
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Fig. 5. Shapes of the functional forms for the smoothed covariables used in the interval data model example. Zero on the vertical axes corresponds
to no effect of the covariable on the estimated response (which for this model is waiting area = {pod density] ~%), The locations of the observations
are pletted as small ticks along the horizontal axes.
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Fig. 6. Density of minke whale pods in Area III, estimated vsing the interval data model.
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in this paper, we are seeking to demonstrate the methodology
rather than select the ‘best’ model, so the automated
procedure is adequate for these purposes. A better
comparison of the methodologies would be gained from
using simulated data to examine possible biases and further
evaluate conditions under which the spatial models might be

expected to perform favourably in comparison to a stratified
analysis. Substantial progress in this regard has been made
by Clarke et al. (1999), who in their simulation of survey
data from the Japanese Whale Research Programme under
Special Permit in the Antarctic (JARPA), compare
conventional line transect estimates, corrected estimates that
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attempt to account for a bias in the JARPA survey design
(Burt and Borchers, 1997), and estimates under the interval
data model.

One of the potential advantages gained by using a spatial
maodel to estimate density is an improvement in the estimated
precision, since variation in density can be explained by
relatively few spatial covariates. In this example, we applied
aresampling technique, the parametric bootstrap, to estimate
the precision of the estimates of abundance by straturn and of
the total abundance in the area surveyed. The results from
using this technique look extremely promising. For the count
data model, appreciable improvements in estimated
precision were obtained in both the stratum estimates and the
overall abundance estimate compared to the analytical
estimates from the stratified analysis. Some questions
remain about the possible inducement of negative bias in
these estimates, for example, by neglecting unmodelled
comrelation in constructing the bootstrap resamples, as
demonstrated by the relatively low mean estimated
dispersion parameter seen in the pseudosamples compared to
the observed data (Table 3). A Monte Carlo test performed
on the estimates in Table 3 indicated significant differences
(at significance levels 0.02 and 0.04 for the count data and
interval data models respectively) between the dispersion
parameter estimates from the observed data and the means of
the estimates from the two sets of pseudosamples. For the
interval data model, there was no improvement in precision
for the overall abundance estimate, but the precision of the
stratum estimates was increased, most notably in the two
strata  with fewest sightings: the EN and ES strata.
Model-based estimates can be expected to provide increased
precision over stratified estimates in such circumstances,
since conditional on an appropriate model, data from outside
a stratum can still provide information relevant to the
estimation of density within that stratum.

Table 3

Dispersion parameter estimates from the observed data and from the
parametric bootstrap resamples.

Dispersion parameter
estimated from the
obscrved data

Mean of the dispersion
parameter estimates from
100 pseudosamples

Count data model 2.767 1.683
Interval data model 3.304 1.922

Model selection uncertainty can be readily incorporated
into the variance estimator. Rather than conditioning on the
original spatial model, the explanatory variables and their
degree of smoothness would be independently selected for
each bootstrap resample (e.g. see Buckland et al., 1997).
This will tend to inflate the variance of the estimators, and
arguably better reflects their true variance, but for purposes
of comparison with conventional line transect estimates of D
and N, we do not incorporate such uncertainty here.

CONCLUSIONS

Although the unbiasedness of the parametric bootstrap
method needs to be established before the associated
variance estimator can be used with confidence, the spatial
modelling methods presented here represent a  very
promising improvement over traditional line {ransect
estimation methods in several respects:

(1) they provide a statistically sound means for estimating
abundance at any spatial resolution (e.g. by Small

Management Area, see IWC, 1999) with relatively high
precision (because they exploit data from outside the
small area);

(2) by modelling the spatial variation in density, they may
provide higher precision for abundance estimation in the
whole survey area than stratified estimation methods;

(3) they provide a powerful tool for relating cetacean
distribution and abundance to spatial and other
explanatory variables.

In addition, unlike conventional line transect analyses which
rely on statistical sampling theory for the estimation, the
spatial methods adopt a model-based framework. This is
potentially advantageous because there is no requirement for
random placement of transect lines, although it remains
inadvisable to extrapolate the predicted density surface
beyond the range of the region where the data are collected.
In particular, provided the spatial coverage is reasonably
representative within the region of interest, spatial models
have potential value in modelling data from Platforms of
Opportunity (see Bravington, 1999). The only substantial
disadvantage of the methods relative to traditional stratified
methods for estimating abundance is their complexity; in
particular, model selection issues remain largely unresolved.
However, the spatial modelling metheds have useful
applications beyond simply estimating abundance.

One of the long-term research objectives of the
IWC-SOWER 2000 research programme is to relate spatial
and temporal variability in oceanographic variables and prey
distribution to cetacean distribution and abundance. As
noted above, the methods presented in this paper provide a
useful tool for addressing this objective, With sufficient
coverage over a time period, it would be quite
straightforward to incorporate a temporal component to
assess changes in spatial distribution with time. Whilst this
may result in useful inferences over time periods of less than
a year, perhaps more useful inferences on inter-annual
changes in distribution and abundance are likely to result
from methods which integrate process models and survey
data (e.g. Sullivan, 1992; Fewster, 1999). Spatial models like
those presented here are likely to be an important component
of such integrated models.

The spatial methods described have already been applied
to several quite different datasets, yielding informative
results. The count data methodology has been used to
describe the spatial distribution of minke whales from an
aerial survey off the coast of West Greenland (Hedley et af.,
1997), whilst applications of the interval data methodology
include modelling Antarctic minke whale distribution from
data collected on JARPA surveys (Clarke ef ¢l., 1998), and
modelling the distributions of harbour porpoise and minke
whales in the North Sea and surrounding waters using data
from the 1994 SCANS survey (Burt et al., 1999). However,
a fuller understanding of the performance of the methods
would be achieved by using simulated data. Some questions
that such research would attempt to address include testing
the sensitivity of the count data model to segment length
selection and testing the robustness of the models to the
selection of smoothing parameters, together with further
investigation of variance estimators.

Finally we note some problems in estimating individual,
rather than group, abundance. Equation (2) gives a response
variable which could be used in estimating individoal
abundance from the count data model, but the use of such a
response in a spatial model will generally induce even more
overdispersion than the Horvitz-Thompson estimator of
Equation (1). Further, variance estimation becomes more
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difficult since any resampling algorithm should take into
account spafial variation in school size. The estimation of
individual abundance from the interval data model has not
been addressed in this paper. One possible solution is to fit a
spatial model to the observed group sizes and multiply the
resulting surface by the group density surface given by the
spatial model. However, if size bias is present, estimation of
a group size surface in order to estimate absolute abundance
is not straightforward. Bravington (1999} describes
difficulties in modelling group size even when the objective
is to obtain relative abundance estimates. One solution is to
revert to estimating mean group size as in conventional line
transect estimation, and simply multiply the group
abundance estimates by the estimated mean group size to
obtain estimates of the number of individuals. This has the
disadvantage of not modelling spatial variation in group size
{except, where samiple sizes permit, by stratum), but it has
the advantage of being able to utilise the methods that have
been developed for accounting for size-bias in conventional
line transect estimation, such as those described in Buckland
et al. (1993, pp.125-135). Research is ongoing to examine
whether group size could be incorporated directly into the
interval data model framework, via marked point process
modelling, but it appears that this is only a solution when
certain somewhat unrealistic assumptions can be met. The
models would benefit from further research aimed at the
development of methods which are capable of modelling the
group size surface separately from the group density surface,
whilst taking account of any size bias.
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