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ABSTRACT

Decisions concerning the management and conservation of cetacean populations depend upon knowledge of population parameters, which
generally must be estimated from sample data using statistical models. However, data from the cetacean populations are often sparse, and
resultant parameter estimates can be uncertain and difficult to obtain. This review uses examples from published work to highlight the utility
of the Bayesian statistical paradigm as a suitable estimation framework in these situations. By evaluating the probability of obtaining the
available data, given a specified estimator model, for a whole prior distribution of possible parameter values, the Bayesian approach is
capable of quantifying the uncertainty associated with parameter estimates. The potential also exists for reducing uncertainty by
incorporating relevant information into the prior distributions used in the Bayesian estimation procedure. The paper describes how the use
of graphical model specification and graphical output of parameter estimates can make Bayesian methods attractive for data analysis and
explains the recent advances in computational methods that have made Bayesian techniques more available for providing useful estimates
of cetacean population parameters.
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BACKGROUND

Scientific advice is essential when making decisions
concerning the conservation and management of cetacean
populations. These decisions often depend upon knowledge
of population parameters, which generally are not directly
observable but estimated from sample data using statistical
models. The past two decades have seen major
breakthroughs in the collection and analysis of such sample
data, such as the application of mark-recapture type models
to photo-identification data to produce estimates of
population size (e.g. Hammond et al., 1990), population
trends (e.g. Whitehead et al., 1997) and other demographic
parameters (e.g. Olesiuk et al., 1990; Wells and Scott, 1990;
Slooten et al., 1992; Brault and Caswell, 1993; Barlow and
Clapham, 1997; Caswell et al., 1999).

Despite the developments of successful field-based
sampling techniques, however, the inherent difficulties of
studying cetaceans often leaves biologists and managers
with the problem of drawing inference from sparse data. For
example, small sample sizes of photo-identification data
often results in high uncertainty in abundance estimates
(Hammond, 1987), and there is consequently limited power
for directly detecting trends in population estimates
(Gerrodette, 1987; Thompson et al., In press). Furthermore,
estimates of demographic parameters are limited to a
minority of well-studied populations, as long-term studies
are necessary to accurately estimate fecundity of long-lived
cetaceans (Barlow, 1990), and a high rate of re-identification
of individuals is necessary for precise estimates of survival
(Buckland, 1990). In the majority of cases, information on
population parameters is simply not available. Where data
do exist, sample sizes are often small, and estimates are
extremely uncertain. Consequently, if models are to be used
to provide reliable management advice, explicit recognition
of this uncertainty in parameter estimates is essential and
indeed was inherent in the design of the International

Whaling Commission’s Revised Management Procedure
(e.g. Hilborn et al., 1993).

This review highlights the utility of the Bayesian
statistical paradigm as a suitable framework for producing
useful estimates of cetacean population parameters under
these circumstances. It is particularly aimed at introducing
this approach to cetologists and managers not familiar with
developments within the IWC Scientific Community. It
begins by contrasting the Bayesian philosophy with the more
widely used frequentist statistical approach, proceeds by
describing the practical computational mechanisms for
presenting parameter uncertainty in Bayesian posterior
distributions, and then uses examples from the published
literature to demonstrate the utility of these mechanisms. It
also highlights the potential for using the Bayesian
framework to reduce uncertainty by incorporating all
relevant information directly into the estimation procedure.
Finally, it suggests how Bayesian estimates of cetacean
population parameters can be directly integrated into
management decisions.

STATISTICAL PHILOSOPHIES

The commonest approach to parametric statistical inference
is to use models for the data-generating mechanism to
specify a likelihood function, which quantifies the
probability of observing the data given the values of the
model parameters. However, there are widely differing
views as to how the likelihood function should be
interpreted. Whilst many statisticians now take the
pragmatic stance of moving between the philosophies
outlined, this does not mean that the differences in
philosophy have been removed.

On the one hand, the frequentist philosophy is to treat the
parameter values as fixed but unknown and ascribe all of the
randomness to the data. Parameters are estimated by
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maximising the likelihood, with confidence intervals being
obtained by a mathematical consideration of what other data
could have been drawn and finding functions of these data
with the correct coverage probabilities. In complex
situations where the mathematics are too difficult, simulated
inference is used to actually generate new datasets, either by
Monte Carlo simulation or by using bootstrap methods to
resample from the data. For each new dataset, the entire
method of parameter estimation must be repeated and the
variability in the set of parameter estimates is taken as an
indication of the uncertainty in the estimate from the original
data (Efron and Tibshirani, 1993).

On the other hand, the Bayesian philosophy is to treat the
data as fixed and the parameters as random. Bayesian
methods evaluate the probability of obtaining the same fixed
data for a whole range of possible parameter values, which is
specified by a prior probability distribution (Appendix 1).
This prior distribution encapsulates all information about the
model parameters that is not present in the data used in the
likelihood function, and therefore the combination of prior
and likelihood should contain all available information about
the parameters. The product of the prior distribution and the
likelihood function can be thought of as a full probability
model – a joint probability distribution for all observable and
unobservable components of a model. Conditioning on the
observed data, this model can therefore be used to calculate
the joint conditional or ‘posterior’ probability distribution of
all the unobserved parameters of interest. Inference about a
given parameter, or functions of parameters, is performed by
integrating out all other parameters to obtain the marginal
posterior distribution of interest (Gelman et al., 1995). This
marginal posterior distribution has the intuitive appealing
property of being a probability density function, with all the
associated measures of uncertainty being readily
presented.

PRACTICAL BAYESIAN INFERENCE

The potential to express information about model parameters
as direct probabilistic statements renders the Bayesian
approach particularly attractive for ecological applications
(Ellison, 1996). However, the calculation of marginal
posterior distributions for individual parameters requires
multidimensional integration, with the dimension equal to
the number of parameters being estimated, which can
present practical difficulties in all but the simplest cases
(Smith and Gelfand, 1992). As the number of parameters
increases, marginal posterior distributions become
increasingly difficult to calculate analytically, and in some
cases impossible. The high dimensionality required for
biologically meaningful models has thus limited the
implementation of the Bayesian approach in ecological
analyses until recently. However, methods are now available
for estimating posterior probability distributions,
specifically through two distinct Monte Carlo simulation
approaches: (i) importance sampling; and (ii) Markov Chain
methods (Smith, 1991). 

In importance sampling, the posterior distribution of
interest is approximated by a specified probability
distribution known as an importance function. Using a
Monte Carlo approach, random draws are then made from
the importance function to produce a collection of possible
values for the parameter to be estimated, along with their
corresponding probabilities (Smith, 1991). Thus, the key to
this approach is to find a suitable importance function,
namely one that approximates the posterior distribution as

accurately as possible. One method by which this can be
obtained is through the Sampling-Importance-Resampling
algorithm, SIR (Rubin, 1988; Smith and Gelfand, 1992), in
which the importance function comprises sampled values
from the prior distribution weighted by their relative
likelihoods. These sampled values are then resampled to
produce a sample from the posterior, with the probability of
sampling a particular value being determined by its
likelihood (Appendix 2). This sampling-resampling
approach provides essentially calculus-free use of Bayes’
Theorem, and has been advocated as allowing practitioners
to perform ‘Bayesian statistics without tears’ (Smith and
Gelfand, 1992).

The practical utility of SIR can be exemplified by its
application in fisheries stock assessments (e.g. Hilborn and
Walters, 1992; McAllister et al., 1994; McAllister and
Ianelli, 1997), and particularly by a Bayesian approach to
trend analysis for a population of spectacled eiders
(Somateria fischeri; Taylor et al., 1996). The Bayesian SIR
has also been employed in studies of cetaceans: Raftery et al.
(1995) used the SIR as part of a Bayesian assessment of
bowhead whale (Balaena mysticetus) catch quotas; Wade (In
press) used the SIR to estimate parameter distributions in a
Bayesian stock assessment of the gray whale (Eschrictius
robustus); and Wade (1999) demonstrated the utility of SIR
for fitting population models to abundance data for spotted
dolphins (Stenella attenuata). The graphical and
easy-to-interpret probabilistic displays of parameter
uncertainty that these studies present, along with the relative
ease in which they were produced, presents a persuasive
argument for the use of the Bayesian SIR in these types of
ecological studies. 

For many problems, however, especially high
dimensional ones, it may be difficult or impossible to find an
importance sampling density that is an acceptably accurate
approximation of the posterior distribution (Carlin and
Louis, 1996). In such cases, Markov Chain Monte Carlo
(MCMC) methods provide an alternative approach, in which
an approximate sample is drawn from the posterior
distribution itself (Brooks, 1998). MCMC is essentially
Monte Carlo integration using Markov Chains, in that the
posterior sample is drawn by running a Markov Chain with
the posterior serving as the chain’s stationary distribution
(Appendix 3).

The MCMC method has enjoyed an enormous upsurge in
interest and application over the last few years (Brooks,
1998). Much of this recent use can be attributed to the
development of the computer software BUGS (‘Bayesian
inference Using Gibbs Sampling’; Thomas et al., 1992;
Gilks et al., 1994), which allows relatively straightforward
implementation of the Gibbs sampling MCMC method
(Gelfand and Smith, 1990; Smith and Roberts, 1993). Gibbs
sampling is especially useful because it reduces the problem
of dealing simultaneously with a large number of related
unknown parameters and missing data into a much simpler
problem of dealing with one unknown quantity at a time,
estimating the posterior probabilities for this quantity
conditional upon the current values of all other quantities and
the relationship between them (Gilks et al., 1994). The
BUGS software provides a language for specifying the
quantities involved in the model, processes this model
structure and data to compile the sampling distributions
required for MCMC, and then implements the sampling
procedure. As such, BUGS is a computer-intensive
statistical tool that allows practitioners to perform MCMC
sampling with the minimum investment of programming and
training time.
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This utility has been further extended by a recently
released version of the BUGS software for the Windows
computing environment (WinBUGS; Spiegelhalter et al.,
1999). A notable feature of the WinBUGS package is that
model structures can be specified using graphical models
that express the relationship between variables, and
sampling can actually be performed directly from these
graphical model representations without the use of
programming code. A graphical model is a tool to represent
conditional independence assumptions. By providing simple
representations of the conditional independence between
model variables, graphical models can simplify the
implementation of Gibbs sampling by alleviating the
requirement to derive ‘by hand’ the full conditional
distribution of each variable in the model (Speigelhalter
et al., 1996). In addition, graphical models are of immense
value in ecological data analysis, by allowing the drawing of
inferences from realistically complex models in a form that
is readily communicable and understood (e.g. Best et al.,
1996; Speigelhalter et al., 1996).

MCMC methods have been used infrequently in
ecological applications to date. However, these methods are
now being employed in fisheries stock assessments
(Bjornstad et al., 1999; Meyer and Millar, 1999a) and the
utility of the BUGS software has recently been demonstrated
in this context (Meyer and Millar, 1999b). As this software
tool continues to become discovered by ecologists, it is
likely that MCMC methods will see increasing use in
drawing inference in these types of high dimensional,
non-linear ecological problems. Furthermore, in the context
of this review, MCMC may be of some value when assessing
cetacean population dynamics using demographic models
with several parameters, and when attempting to
parameterise models using sparse or incomplete data.

USING PRIOR INFORMATION

In order to provide the posterior distribution for parameter
estimates, the Bayesian method requires the specification of
a prior distribution. Two types of prior distributions can be
used in Bayesian analysis: non-informative and informative
priors (Box and Tiao, 1973). To many attracted to the
Bayesian inferential paradigm, but sceptical about the role of
subjectivity in specifying priors, the idea of a
non-informative prior distribution has proved highly
seductive. Non-informative priors are seen as representing
ignorance and ‘letting the data speak for themselves’, and are
thus often regarded as synonymous with providing objective
inference (Bernado and Smith, 1994). 

However, whilst non-informative priors allow the use of
the Bayesian approach, methods that use this framework
without fully exploiting the utility of prior specification of
possible parameter values are not taking advantage of the full
potential of the Bayesian approach. The use of informative
priors can allow the efficient incorporation of diverse
sources of pre-existing information into statistical
procedures, with the potential for parameterising a model far
more accurately than would otherwise be possible. This is
aptly demonstrated by studies in which inference has only
been possible due to the use of prior information. For
example, Raftery et al. (1995) used a Bayesian approach to
incorporate three different types of information into a model
of bowhead whale population dynamics. The three types of
information (recent census information, historic whaling
records and biological information about birth and death
rates) were combined into a joint prior (termed ‘premodel’)
distribution, to be incorporated into this model-based

inference. Through the explicit combination of different
types of prior information, Raftery et al. (1995) were able to
yield full inference about population management
questions1.

Trenkel et al. (2000) further demonstrate the utility of
empirically-based informative priors, in this case when
producing red deer (Cervus elaphus) population
management models. They demonstrate how information on
demographic processes, obtained from closely studied deer
populations, can be used to parameterise a management
model for a less studied population. This was only possible
through the adoption of a Bayesian framework. The
demographic data from the well studied populations were
used in the specification of prior distributions for a
population dynamics model, which also incorporated count
and cull data from the less studied population, which was of
interest to managers. This pioneering approach is of
immense value for modelling the dynamics of wildlife
populations, where much of the parameter uncertainty often
originates because it is not possible to parameterise the
population model using data from the study population
alone. This is a common situation when trying to use
demographic models to estimate cetacean population growth
rates (Barlow, 1991) and population viability (Thompson,
et al., In press). As such, the type of approach presented by
Trenkel et al. (2000) has great potential for parameterising
models for cetacean populations, for which only limited data
exist.

The ability of Bayesian analyses to combine data from
more than one population has also been exploited by Taylor
et al. (1996). When fitting a population model to a time
series of abundance data for spectacled eiders, they used data
from common eider populations to parameterise
environmental stochasticy. It is widely recognised that,
when fitting a population model to abundance data, it is
generally impossible to distinguish between environmental
variance and sampling error from the abundance data alone
(Hilborn and Walters, 1992). This has often led researchers
to ignore one or the other. However, by incorporating
information on the natural variation in common eider
population size into their analysis, Taylor et al. (1996) were
able to estimate the relative magnitude of both the
enviromental and sampling variation in spectacled eider
population trends. Admittedly, using common eider data to
parameterise environmental variance is not ideal, but is
preferable to ignoring the role of environmental stochasticity
in population growth (Taylor et al., 1996). 

This type of approach is likely to be particularly valuable
for assessing cetacean population trends, as cetacean
population estimates are typically subject to large sampling
variance (Hammond, 1987). Using conventional
approaches, which do not provide the facility for
incorporating relevant pre-existing data, it is not possible to
detect real trends beyond this sampling variance. Perhaps a
Bayesian approach of using prior information on real
abundance variation from those few accurately enumerated
populations will allow some useful, albeit uncertain,
inference to be drawn from time series of uncertain
abundance estimates from other populations.

1 It is important here to refer to the potential problem of Borel’s Paradox
as arose in the ‘Baysian Synthesis’ approach used to assess bowhead
whales (e.g. see Givens et al., 1995; Raftery et al., 1995; Wolpert,
1995; Schweder and Hjørt, 1996). Put simply, under certain cases,
post-model distributions are not unique and depend on the particular
functional form of parameters used in the model (see discussion in e.g.
Givens and Bravington, 1996; Punt and Butterworth, 1997; 1999).
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The procedure of specifying a prior distribution for the
parameter to be estimated therefore allows Bayesian
approaches to borrow strength from data on other
populations. Using a similar approach, a Bayesian
framework can also be used for a more efficient analysis of
temporally structured data, by borrowing strength from
previous estimates of the same population. Consider, for
example, a population for which it is required to estimate
population size in each of a series of consecutive years.
Conventionally this estimation would proceed
independently for each year in turn. However, under the
Bayesian paradigm each year’s data can be seen as an
accumulation of further evidence which can be used to
update beliefs generated through the analysis of previously
available data. Since Bayesian inference is an iterative
process, the posterior probability obtained by one analysis
can be used as the prior probability distribution for a new
analysis (Bernado and Smith, 1994). 

The practical implementation of this kind of updating
procedure is again exemplified by Trenkel et al. (2000) in
their Bayesian approach to constructing a red deer
population dynamics model. Because their model was based
on temporally structured annual count and cull data, they
implemented a procedure that allowed model parameters to
change over time as more years of data were used in the
estimation. In order to achieve this, a sequential approach to
importance sampling was used, known as the Bayesian Filter
(Gordon et al., 1993). In the Bayesian Filter, a sample from
the posterior distribution at one time interval is obtained, just
as in the SIR, via a weighted bootstrap, where the weights for
each simulation realisation are given by the re-scaled
likelihood values. The posterior sample then serves to create
the sample from the prior distribution for the next time
interval (Trenkel et al., 2000).

This elegant and straightforward approach of using new
data to update previous beliefs presents considerable
potential for the analysis of temporally structured data on
cetacean populations. It will have particular utility for
assessing trends in populations which change little between
years, and as such offers considerable potential for the
analysis of mark-recapture data from cetacean populations,
where variances in population estimates are generally large
relative to actual changes in the population size (Hammond,
1987). Mark-recapture methods are carried out over time, so
the procedure of updating a posterior distribution over time
is appealing (Pollock, 1991) and innovative Bayesian
approaches to mark-recapture modelling have already been
developed (Casteldine, 1981; Gazey and Staley, 1986;
Smith, 1988; 1991; George and Robert, 1992). However,
these models still approach mark-recapture estimation as a
separate problem for each estimation period, and it may be
that sequential Bayesian approaches to mark-recapture
modelling are capable of exploiting previous estimates to
reduce estimate precision and increase the potential to detect
trends. If they are successful, then such approaches will
represent a significant advancement in the study of cetacean
population trends from uncertain mark-recapture data.

APPLIED BAYESIAN INFERENCE

This review has advocated the Bayesian paradigm as a
powerful method for combining multiple sources of data into
a single inferential framework, whilst at the same time fully
incorporating uncertainty into the resulting inference. These
facilities alone present a persuasive argument for the use of
Bayesian approaches in ecological data analysis and the
particular potential for their use in assessing cetacean

population dynamics is clear. However, a further benefit of
Bayesian inference is that the resultant posterior distribution
for parameter estimates can be used to lead quickly and
naturally to estimates of applied interest, which will
themselves explicitly account for all sources of uncertainty.
For example, Taylor et al. (1996) demonstrated the utility of
incorporating Bayesian posterior inference into a population
viability analysis (PVA) for a threatened spectacled eider
population. By performing a Bayesian analysis of population
trends, they were then able to directly incorporate the entire
posterior distribution for the population growth rate into
stochastic projections of future population size, thus fully
accounting for data uncertainty when estimating extinction
parameters. Previous PVA calculations have been criticised
for not accounting for uncertainty due to parameter
estimation (Taylor, 1995). Furthermore, the need to consider
uncertainty about crucial parameters when estimating
extinction parameters was aptly demonstrated by Ludwig
(1996), who showed that methods based upon point
estimates, that do not incorporate parameter uncertainty, can
grossly underestimate the risk of extinction. As such, the
PVA performed by Taylor et al. (1996), which does account
for parameter uncertainty within its estimates of extinction
rates, represents a major advance over previous PVA
attempts. However, this Bayesian approach of fully
representing scientific uncertainty can actually present
further problems to decision-makers, as it now precludes the
use of simple patterns of decision-making that are
appropriate for predictable systems. Instead, some form of
decision-making that can take explicit account of uncertainty
is required (Ludwig, 1999).

One of the most notable advantages of Bayesian posterior
inference in ecological analysis is that it does provide the
potential for incorporating scientific uncertainty directly into
management decision processes. For example, McAllister
et al. (1994) used the entire posterior output distribution
from a Bayesian fisheries stock assessment to make
accompanying estimates of biological and economic risks of
alternative harvesting policies, whilst explicitly accounting
for uncertainty about stock size. In this study, the
probabilities of each possible current stock size were
obtained from the output posterior distribution of the
Bayesian stock assessment. For each possible stock size, the
consequences of each alternative management action were
then evaluated, and summarised by a performance index
(total catch). This performance index was then weighted by
the probability of each stock size to provide the expected
values for each performance index for each candidate
management action (McAllister et al., 1994). The
conceptually straightforward and easily interpretable
approach adopted in this example demonstrates why
Bayesian approaches are increasingly being used to provide
scientific advice in fisheries management (e.g. Thompson,
1992; Hilborn et al., 1994; McAllister et al., 1994; Walters
and Punt, 1994). A Bayesian approach is being used in the
development of a management procedure for aboriginal
subsistence whaling by the IWC Scientific Committee (e.g.
see IWC, 1997; 1998; 1999).

CONCLUDING REMARKS

This review has highlighted a number of ways in which the
Bayesian approach can provide a formal framework for
including scientific uncertainty into management decisions
concerning cetacean populations. Uncertainty is
fundamental to all scientific activities, and therefore its
inclusion in the decision-making process is not simply
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desirable, but essential. As Ludwig et al. (1993) illustrated,
ignoring ecological uncertainty has led repeatedly to
environmental catastrophes. Nonetheless, the lack of
quantifiable uncertainty has often been used by ecologists to
justify their lack of involvement in decision-making
processes, and by some decision analysts as a vehicle to
avoid using scientific information in the process (Ellison,
1996). However, the application of Bayesian approaches
now provides ecologists with a powerful and formal tool for
presenting the kind of complex and uncertain advice that
pertains to most conservation and management decisions
(Doak and Mills, 1994; Ludwig, 1999). This improved
integration between scientific estimates and management
decisions has already been demonstrated in the management
of unpredictable fisheries (e.g. Hilborn and Walters, 1992;
Punt and Hilborn, 1997). Bayesian approaches have become
widely used in this fisheries context, due to a need for
scientists to use uncertain data as a basis for advice to
fisheries managers, and to the intense international scrutiny
that requires the most rigorous statistical analysis be used.
Similar requirements should see the increasing use of
Bayesian inference in both the scientific study and
management of cetacean populations in the future.
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Appendix 1

BAYES’ THEOREM

Bayes’ theorem (Bayes, 1763) can be stated as follows:
where’

l(xIy) is the likelihood of obtaining data x given parameter
value y;

p(y) is prior probability distribution for the parameter y;

p(yIx) is posterior probability distribution for the parameter y
given the data x.

This theorem therefore states that the posterior probability of
a parameter y given the data x is proportional to the product
of the likelihood of the data given specified values for the
parameter and the prior probability for the parameter. The
denominator of the above equation is the expected value of
the likelihood function, which acts as a scaling constant to
normalise the integral of the area under the posterior
probability distribution.
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Appendix 2

THE SIR ALGORITHM

Sampling-Importance-Resampling (SIR) (Rubin, 1988;
Smith and Gelfand, 1992) is a simple and versatile method of
generating posterior probability distributions through
importance sampling (Smith, 1991). The approach involves
parameter values being randomly selected from the prior
distribution to form a sample set yi. Using the likelihood
function, the likelihood of the data x given a particular yi is
calculated and stored. This is repeated, generating n yi’s with
associated likelihoods. This serves to create an importance
function, with the possible parameter values forming a

discrete distribution with mass being placed according to
relative likelihoods. These n yi’s are then re-sampled m times
with replacement, with probability equal to weight qi,
where:

This re-sampling procedure serves to approximate a random
sample from the joint posterior distribution.

Appendix 3

MARKOV CHAIN MONTE CARLO SIMULATION

Suppose we generate a sequence of random variables {X0,
X1, X2, …}, such that at each time t ≥ 0 the next state Xt+1 is
sampled from a distribution P(Xt+1_Xt) which depends only
on the current state of the chain, Xt, not on any further
previous history. This sequence is called a Markov chain. As
it progresses, a chain will gradually forget its starting state
(X0) and the distribution of any Xt given X0 will eventually
converge to a unique stationary distribution, which does not
depend on t or X0. Thus, as t increases, the sampled points
{Xt} will look increasingly like dependent samples from this
stationary distribution, and after a sufficiently large number
of iterations the sample points will reasonably approximate
this distribution (Gilks et al., 1996).

The problem of constructing a Markov chain so that its
stationary distribution is precisely the distribution of interest
(in this case the posterior distribution) is the focus of Markov
Chain Monte Carlo (MCMC) methods. To date, most
statistical applications have used an MCMC approach
known as the Gibbs sampler (Gelfand and Smith, 1990;
Smith and Roberts, 1993; Gilks et al., 1996). The Gibbs
sampler is a special case of a general method known as the

Metropolis-Hastings algorithm (Hastings, 1970), which
provides the basis for MCMC methods. These methods
begin by selecting an initial value for each parameter. The
prior probability and likelihood of that value can be
calculated from the specified model for inference,
and Bayes theorem can be used to calculate the value’s
posterior probability. A new parameter value is then
randomly drawn, and its posterior probability is calculated.
If this probability is higher than that of the previous value
then the Markov chain proceeds; if it is lower than the
previous value, then the chain proceeds with probability
equal to the posterior probability of the new value divided by
the old value’s posterior probability. This iterative step is
repeated with further random draws of new parameter
values. Because the chain’s progression is determined by the
relative posterior probabilities of sampled values, the chain
will gradually converge towards the region of the parameter
space with greatest probability, and the parameter values
comprising the chain will then provide a random sample
from the posterior distribution for the parameter of
interest.
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