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ABSTRACT

Data on relatedness of individuals between or within samples can be used to address population parameters in much the same way as conventional
mark-recapture data and has some advantages, but also opens up new research areas. In such studies not only decisions on the sample size have to
be made but also the number of genetic markers to be worked up, or even developed, and during analysis the criteria for accepting a match chosen.
The likelihood of detecting a true match must be assessed and weighed against the likelihood of including a false positive. To aid with this, formulae
are presented here for the probability of the number of relatives alive over periods of time and a process to approach the optimal criterion for match
detection. To apply the process programs were developed that are made available, and an example is given.
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simply 2 and 4 (assuming inbreeding is negligible), but the
number of half siblings may be species specific (see below).
Full siblings are a small proportion (of the order 1/N) in large
randomly mating populations and are not addressed here.
Also needed is the probability that these relatives are alive
(available) between samples, which is more complicated
than with direct matching, but formulae for this are presented
below.

This research was initiated by the need for a research
programme to address stock structure hypothesis of North
Atlantic fin whales. Numerous samples exist from catches
1983–1989. Research vessel time to obtain biopsies is
expensive and therefore optimal use must be made of each
new sample. Of particular importance are estimates of
dispersal rates and abundance. The coefficient of variation
(CV) of the estimated true number of matches (recaptures)
will translate directly into the CV of these estimates (and
most others). An approximate way of minimising this CV
was therefore developed and is demonstrated below. General
programs that were written to assist in this process are
available on the web page [http://www.iwcoffice.org/
publications/additions.htm#add].

A different approach to achieve the best precision in
estimates is to use simulations (Økland et al., 2009). This
will require programming in each case, but may be the only
option in complex scenarios.

MATERIAL

Pampoulie et al. (2008) found a lack of genetic divergence
among samples of North Atlantic fin whales so the allele
frequency table of North Atlantic fin whales combined (n =
469) at 15 micro-satellite loci (Skaug et al., 2009) was used
to calculate the probability of detection of relatedness and
false positive inclusion. The observed matches as reported
in Skaug et al. (2009) using the same micro-satellite DNA
loci in samples of fin whales caught off West Iceland 1983–
1989, are used to exemplify the method.
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INTRODUCTION

Direct matches (recaptures) between collections of
individual DNA-profiles (fingerprinting) have been used for
mark-recapture analysis in natural populations. In addition
these data can be used to infer kin relationships from likely
related pairs (dyads). This has opened up many areas of
research in behaviour, evolution and conservation (Blouin,
2003; Jones and Arden, 2004; Pemberton, 2008). There have
been several studies where DNA-profiles have been used to
detect instances of paternity in whale populations (Clapham
and Palsbøll, 1997; Garrigue et al., 2003; Nielsen et al.,
2001; Skaug and Øien, 2005). Skaug et al. (2005) screened
the Norwegian minke whale (Balaenoptera acutorostrata)
DNA-register for relatives and Skaug et al. (2006; 2009)
screened samples from North Atlantic fin whales
(Balaenoptera physalus) for relatedness. Advantages of
relatedness are that matches of the potential types parent-
offspring and half sibling/grand parentage can equal that of
direct matches (recaptures), so in effect tripling the number
of matches from given samples and over time this advantage
becomes even greater as demonstrated below. Relatedness
matches can also be found to existing samples that came
from dead animals such as from strandings, by-catches and
direct catches. Sampling biases are of much less concern than
for direct matches (see under Methods).

Drawbacks in using relatedness matches are that estimates
are needed of the probabilities of true detection, which may
be significantly less than 1 due to type 2 errors, and of false
positive inclusion, or type 1 errors, which may be
unavoidable. For this, the frequency of marker alleles in the
population is needed but never completely known. Certain
assumptions about the genetic markers also have to be met
to guarantee unbiased results (Skaug, 2001), which are not
addressed here. The detection and false positive probability
estimates are therefore inaccurate. Estimates are also needed
of the number of relatives occurring (over time) of each type
per individual. For parentage and grand parentage this is
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METHODS

What counts as an observation

A sample consists of distinct DNA profiles. An animal
recaptured within a sample will only provide a single profile
(so without replacement). The number of distinct time
ordered profile pairs is here denoted by np and is n(n–1)/2
within a sample of size n and between samples of size n1 and
n2 is n1n2 (minus the number of direct matches to the same
individual which is assumed negligible in comparison). For
convenience relatedness is here considered only to an older
(earlier born) half sibling (HS) to make that test directional
with time, as are the tests to parent (PO) and to grandparent
(GP). Each ordered pair therefore provides two tests of
relatedness of each type, such as given the first profile, test
the second as parent and given the second profile, test the
first as parent. The number of observations (matching tests)
within a sample, and when summed both ways between
samples, is therefore 2np. Rather than multiply by 2, the
probability of the relatives both being alive at the times of
sampling is here added up both ways. Without auxiliary data,
the direction of relatedness can (need) not be discerned. In
general HS and GP relatedness also cannot be discerned and
must be grouped under type-two relatedness (T2).
Misassignment between type-one (PO) and T2 relatedness
needs consideration in each case, but is not believed a
significant problem in reasonable situations (Skaug, 2001),
and not addressed here.

Issues of the sampling and survival

Mark-recapture analysis need random or balanced samples
(at least one of the two samples) for unbiased results. If for
instance males are more easily individually recognised and
in the extreme only males are recaptured, an abundance
estimate based on recaptures will refer only to the male
component. Such a problem would have to be quantified and
the data treated appropriately. In a relatedness study,
however, the matching probabilities are unaffected and the
data could be treated as representing the whole population. 

Spatially one of the two samples needs to be random or
balanced for unbiasedness, unless a random redistribution of
the marked animals between samples can be assumed. When
the marked animals are not the identified or tagged animals
themselves but their relatives, this assumption is more
plausible. 

When direct recapture sampling is sufficiently random with
respect to age (or size) above a certain limit, results will be
unbiased referring to that component of the population.
Recruitment age to the sampling (R) and the age at first
parturition (B) are here assumed knife-edge and R≤ B. A year
(time step) starts with birth. An average annual survival rate
(S) of animals recruited to the sampling (above the limit) can
be used to calculate recapture probabilities over time. If S can
be assumed constant over age, then it is sufficient that age
distribution of just the recapture (later) sample is
representative of the population (if recruitment age of the
samples differs by less than their timing d≥ R2−R1). It is not
sufficient that just the earlier sample is random. If for instance
the later sample is biased towards younger animals there will
be too few recoveries with increasing distance in time.
However in such a case kinship may be slightly more likely

one way, but then less likely the other way, so the total number
of matches in a relatedness study may be little affected.

Number of half siblings

Siblings only count if they reach the age of recruitment to
the sampling. To estimate the number of older half siblings
born per individual an assumption such as of equilibrium or
a stable population is needed such that each animal born will
on average produce exactly two offspring, each recruit will
produce two recruits and each mature animal produce two
mature offspring. The expected number of half siblings over
time is then two (one maternal and one paternal) and one of
them expected to be older, but this holds only if each animal
has exactly two offspring. If reproduction and survival of
offspring is assumed random with on average two offspring
surviving to maturity then this is a Poisson process with
mean 2 (λ) over an average lifespan. Given one offspring of
an average lifespan parent the expected number of other
offspring is then independent and still 2 (λ). The λi of the
Poisson distribution for parents with a different lifespan i is
proportionately different. With the assumption of same
survival at all mature ages the mean number of half siblings
weighted with parent lifespan probability and offspring
number over all i is then 4. If full siblings are rare the total
number of half siblings is then double and half of them
expected older, so that total is also 4. If animals intrinsically
differ in their ability to produce mature offspring, such as
some being sterile, this number will be larger, but to the
opposite effect the assumption of a Poisson process and of
no senescence may be too extreme, in particular for the
females. When animals are recruited prior to maturity the
number is higher by 1/SB−R, but the number 4 is used in
demonstrations here.

Probability of a direct recapture

The probability of a direct recapture of the same animal is
presented here for comparison. Given an animal from the
earlier sample the probability of the animal being alive in the
later sample d years later will have decreased by Sd. If the
conditions discussed above are assumed met, the expected
number of matches between samples with np pairs, that are d
years apart, where N is the size of the recruited population, is 

Sdnp /N (1)

Probabilities of relatives alive

The summation identities ∑ xk = 1/(1−x) and ∑ k xk−1 =
1/(1−x)2 over all k≥0 are used in the following. The given
animal is in all cases the younger (later born) animal and is
a randomly sampled animal in the population (and so alive
at that time). When paternal half siblings are born in the same
year the one in the later sample is here assumed older. The
probability that an animal is sampled at age R+i is Si (1−S)
(sum over i≥0 is 1). The probability that this animal was born
to a parent that is at age B+k is Sk (1−S) (sum over k≥0 is 1).
The recruitment age of the older (earlier born) animal matters
in the case of siblings but in case of other relatedness only
when it came from a nonlethal sample. In the sibling case
their survival before age R has no effect here and both the
samples can be thought of as having taken place R years
earlier and then directed at all ages, so R balances out and is

336 GUNNLAUGSSON: RELATEDNESS BETWEEN SAMPLES



omitted in the following notation, but if R1 differs in the
earlier sample from R2 in the latter sample then d should be
replaced by d−R1+R2. The probabilities here refer to the
stock recruited to the sample of the earlier born animal so
when the recruitment ages differ, before adding the
probabilities, they must be synchronised to refer both to for
instance the total stock, by dividing with SR where R is the
recruitment age of the earlier born animal in each case.

Probability that a single older half sibling is alive within
sample/year
Consider an age difference k>0 so the age of the older sibling
would be i+k at the time of the sampling if it were alive. The
older sibling has to have survived the i+k period so the
probability of it being alive is S i+k. The average probability
of the older sibling being alive is obtained by summing this
over all i and k weighted by the likelihood of each instance.
The joint probability that the older sibling is alive and the
younger sibling is at age i is Si+k Si (1−S). Summing over all
i≥0 gives the probability that the older sibling is alive given
an age difference k as Sk/(1+S). The probability of an age
difference k decreases by S k as the parent is less likely to be
alive as time passes. This probability must sum to 1 so for
single maternal siblings where k≥1 is S k−1 (1−S). Paternal
siblings can be born in the same year so the probability is for
k≥0 and is Sk (1−S). Applying these weights and summing
over all k gives the older half sibling probability alive as 

S /(1+S)2 maternal, 1/(1+S)2 paternal. (2)

If recruitment is gradual over a limited age span the
maternal probability is slightly higher, but over a longer span
the effect is negative.

Probability single older half sibling is alive between
samples spaced d years apart
Given an animal from the earlier sample, the probability of
its older half sibling being alive in the later sample decreases
by Sd. Given the expression above the older half sibling
probability alive in the later sample becomes

Sd+1/(1+S)2 maternal, Sd /(1+S)2 paternal. (3)

Given an animal in the later sample, the probability that
its older half sibling is alive in the earlier sample is higher
by S−d, that is S i+k−d while k≥d. The joint probability of the
younger sibling being at age i (as above) and the older sibling
alive is Si+k−dS i (1−S). When the age difference is k≥d
summed over all i≥0 this is Sk−d/(1+S). 

When the age difference is k<d the older sibling will not
have been born or recruited while i+k<d and the sum is taken
only over all i ≥d−k when the older sibling is available, this
is Sd−k/(1+S). Weighting both cases with the probability that
the age difference is k (is as above) and summing Sk−1 (1−S)
Sk−d/(1+S) over k≥d and Sk−1 (1−S) Sd−k/(1+S) over k<d gives
Sd−1/(1+S)2 + Sd−1(d−1)(1−S)/(1+S) which gives the probability
that older half sibling is alive in the earlier sample as

Sd−1(S2+d(1−S2))/(1+S)2 (4)

The combined probability, the sum both ways of the older
half sibling being alive is then

Sd−1(2S2 +d(1−S2))/(1+S)2 maternal 
Sd−1(S+S2 +d(1−S2))/(1+S)2 paternal

(3)+(4)

If the females only give birth every second year then S
must be replaced by S2 and d by d/2 in the maternal
probabilities above.

Probability that the parent is alive between samples spaced
d years apart
When d is 0 the parent has to have survived at least to the
recruitment age of the offspring, to be matched, so
probability of survival is SR+i. Summed and weighted with
the age distribution of the offspring (see above) gives
SR/(1+S). For larger d the probability decreases by Sd so the
probability of its parent alive in a later sample is

SR+d/(1+S) (5)

Given an animal from a later sample the probability of the
parent being alive in the earlier sample increases to

SR−d/(1+S) while d≤R (6)

When d>R and the earlier sample came from dead
animals, an animal in that sample may be excluded as the
parent of young animals in the later sample so the probability
of a parent possible and alive is 

Sd−R/(1+S) when d≥R (7)

When the earlier sampling was non-lethal and d>R parents
may be sampled before the birth of the offspring and the
probability parent alive in nonlethal earlier sample increases to 

Sd−R/(1+S)+1−Sd−R when B≥d≥R (8)

When d>B some parents will however not be born or
recruited to the sampling and the probability parent is alive
in nonlethal earlier sample is

Sd−R/(1+S)+(1−SB−R +(d−B)(1−S))Sd−B when d≥B≥R (9) 

If the recruitment age of the parent (RP) differs from the
recruitment age of the offspring then B must be replaced with
B−RP+R in the above. If recruitment is assumed 20, 40, 60,
80% by year the probability can be calculated by averaging
these 4 cases and within sample is higher by 3% compared to
a knife-edge recruitment (at the age of 50% recruitment +0.5),
but this difference is less if samples are spaced R years apart.

The probability that the grandparent is alive between
samples spaced d years apart
The probability that the offspring is at age R+i at the time of
the its sampling is Si(1−S) and that it was born when its
parent was at the age B+k−i (k≥i) is Sk−i(1−S). Joining the
probabilities and summing over all i(0≤i≤k) gives (1−S)2Sk

(k+1) for the probability of the parent having been born
exactly B+R+k prior to the time of the sampling of the
offspring. The grandparent must have been alive (probability
1) at the birth of the parent of the sampled animal. Given an
animal in the earlier sample its grandparent must then
survive the B+R+k+d years since it gave birth to the parent
to be alive in the later sample, so the probability is SB+R+k+d.
Summing these joined probabilities over all k≥0 gives the
probability that grandparent is alive in the later sample as

SB+R+d/(1+S)2 (10)

Given an animal from the later sample the probability that
the grandparent is alive in the earlier sample is the same, but
d has reversed sign 
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SB+R−d/(1+S)2 when d ≤ B+R (11)

The maximum probability is 1 when d =B+R+k and is
then 0 for larger d when the grandparent sample came from
animals dead before the birth of the parent, so the combined
probability of the grandparent present in an earlier sample
from dead animals is

Sd−B−R(1+(1−S2)(d−B−R))/(1+S)2 when d≥B+R (12)

In a non-lethal sample the probability that the grandparent
is present is also 1 while d>B+R+k and the grandparent is
recruited although not mature, however for d>2B+k the
grandparent is not recruited so in a non-lethal earlier sample
the probability that is added to (12) is

+Sv(1+v(1–S)+(1–S)2v(v+1)/2)–Sd–B–R

(1+(d–B–R)(1–S))
(13)

Where v = d−2B and is replaced with zero if negative.
Additional details such as for R1≠R2 are given on the web
page.

Optimal matching criterion

When nR is the expected number of relatives alive (available)
in the population per individual (summed both ways) of the
type of relatedness tested (see Table 1) the total number of
potential positives in a population of size N is nR N and
negatives (or false positives) is N2 −nRN. In a sample of np
pairs expected positives are npnR/N and the negatives are then
np minus the positives, which are supposedly negligible in
comparison so that term is ignored. In most instances one
will want to minimise the CV in the expected number (mT)
of detected true matches, obtained by subtracting the
expected number (mF) of false positives from the observed
total number (m) of matches: 

mT = m − mF (14)

These numbers are a function of the critical value (c)
chosen as a criterion for accepting matches, and their
expected values are: 

mT = T(c) np nR /N, and mF = F(c)np (15)

where the probabilities of the detection of a true match T(c)
and the inclusion of a false positive match F(c) depend on
the allele frequencies and the measure of gene profile
similarity used.

Here the interest was on a situation where expected returns
are few, but the allele frequencies relatively well determined,
therefore the variation in the observed number of matches m
(approximate variance m) would dominate and the variation
in the estimated probability of detection (F) and false
positives (T) from the allele frequencies was ignored and the
CV2 approximated by m/mT

2, that is (mT +mF)/mT
2. Minimum

is attained when: 

T′ (c) T(c) nR /N +2T ′(c) F(c) −F′(c) T(c) = 0 (16)

Note how the sample size np has conveniently cancelled
out. When the allele frequencies are known T′, T, F′ and F
can be computed and the equation can be solved for N/nR and
this tabulated as a function of c so an optimal critical value
can be looked up for any population size (programs on web
page). From an initially anticipated population size a critical

value c is found and the corresponding observed matches
m(c) are then used to calculate a new Petersen population
estimate N = T(c) np nR/(m(c) − F(c)np). This process is then
repeated until N is stable and the minimum CV has been
attained. 

An efficient measure of gene profile similarity is the LOD
(logarithm of odds) score (Meagher, 1986), where the odds
are defined as P(match | related)/P(match | unrelated). The
formulas for different kinds of relatedness at a single locus
are given in Skaug (2001) and were used in programs (on
web page) that can be used to calculate parent-offspring (PO)
as well as half sibling/grand parentage (HS) LOD score mass
density and cumulative distributions by c with assumptions
of no relatedness (F′ and F), and of parent-offspring as well
as half sibling/grand parentage relatedness (T′ and T) from
allele frequencies, and the convolution of many loci. These
are then combined into a look-up table for the optimal
matching criterion.

RESULTS

Table 1a shows the probabilities of relatives alive and
expected number of relatives alive over a range of years for
S = 0.9 (used below) and S = 0.95 where the earlier sample
came from dead animals. Table 1b gives a comparison to a
non-lethal sample. A program is available on the web page
(http://www.iwcoffice.org/publications/additions.htm#add)
to generate tables for any value of S, R and B. Skaug et al.
(2009) detected 11 potential parent-offspring pairs in 358
samples from North-Atlantic fin whales caught off West
Iceland 1983−1989 using 15 micro-satellite DNA loci. The
63,903 distinct pairs (np, √np = 253) had been screened with
a HS-LOD score of above 6.7. Table 2a shows by population
size (per related individual) the optimal HS-LOD score and
the mass density and cumulative probability of detection of
true PO relatedness and false inclusion of unrelated pairs.
The table shows that this HS-LOD score criterion should
have detected 80% of the true PO matches and included 
2.7 false positives. Based on these and assuming S = 0.9 and
nR = 1.05 parents alive (see Table 1) the Petersen population
estimate is 0.8·1.05·63,903/(11−2.7) = 6,500. Table 2a gives
7.1 as the optimal critical value for a stock of that size. 
Skaug et al. (2008) list the top HS-LOD score matches 
and there it is seen that there is in fact no PO match 
excluded by using this more stringent criterion. The PO
detection ratio with this criterion is 0.73 and false positives
1.5 resulting in an estimate of 5,115, which by table 2a
implies an optimal critical value of 6.9 which results in an
estimate of 5,600 (CV 0.37) and so on, but here this process
was terminated. This process is quickly applied if the pairs
have been ordered by their LOD score. A PO-LOD score is
more powerful for PO relatedness. Table 2b shows that a
PO-LOD score of 8.4 would be optimal for screening when
N/nR is 5,417 and then with expected detection ratio of 
95% and 1.1 false positives. This should result in a total of
12.8 observed matches and a CV of 0.29. The PO-LOD
score for the top 11 HS-LOD score matched pairs is also
given in (Skaug et al., 2010) and the lowest PO-LOD 
score is 11.3 so it is likely that some pairs with a HS-LOD
score less than 6.7 had a PO-LOD score higher than 8.4 and
were missed. In table 2b it is seen that over 20% of all 
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PO pairs should have a PO-LOD score in the range 8.4 to
11.3.

In Table 3 it is assumed that the 15 available micro-
satellite loci could be effectively tripled for T2 (HS+GP)
relatedness (nR≈2.3 from table 1a). It is seen that the optimal

HS-LOD score is 7.5 for a stock of the size implied by the
PO matches (2.3*2.570≈5.600) and would give a detection
ratio of about 61%, or 16 true matches and 3.2 false positives
and a smaller CV of 0.28 (71/253) than from the now
available PO pair profiles.

J. CETACEAN RES. MANAGE. 12(3): 335–340, 2012 339

Table 1a 

Probabilities of relatives (PO = parent-offspring, HS = maternal half-sibling, GP = grandparentage, T2 = HS + GP) alive and expected number of relatives

alive between years (d) when earlier sample came from dead animals for an equilibrium random mating population with on average 2 older half-siblings,

knife-edge recruitment age (R) 7 and first parturition (B) 10 years. Left part with survival (S) 0.9 and right part 0.95. Column All/Sd gives total PO+T2

relatives alive divided by the direct recapture availability Sd. 

S =  0.90 Probability alive Relatives alive 0.95 Probability alive Relatives alive  

D S
d PO HS GP PO T2 All All/Sd 

S
d PO HS GP PO T2 All All/Sd 

  0 1.000 0.503 0.498 0.092 1.006 2.360 3.366   3.37 1.000 0.716 0.499 0.219 1.432 2.872 4.304   4.30 

  1 0.900 0.506 0.501 0.092 1.012 2.372 3.384   3.76 0.950 0.717 0.500 0.220 1.434 2.880 4.314   4.54 

  2 0.810 0.514 0.498 0.094 1.029 2.368 3.397   4.19 0.902 0.720 0.499 0.221 1.440 2.880 4.320   4.79 

  3 0.729 0.528 0.491 0.097 1.057 2.352 3.409   4.68 0.857 0.724 0.497 0.222 1.449 2.876 4.325   5.04 

  4 0.656 0.548 0.480 0.100 1.097 2.320 3.417   5.21 0.814 0.731 0.494 0.224 1.462 2.872 4.334   5.32 

  5 0.590 0.574 0.467 0.105 1.149 2.288 3.437   5.82 0.773 0.739 0.491 0.227 1.479 2.872 4.351   5.62 

  6 0.531 0.607 0.451 0.111 1.214 2.248 3.462   6.51 0.735 0.750 0.486 0.230 1.500 2.864 4.364   5.94 

  7 0.478 0.647 0.434 0.118 1.293 2.208 3.501   7.32 0.698 0.763 0.480 0.234 1.526 2.856 4.382   6.27 

  8 0.430 0.582 0.416 0.127 1.164 2.172 3.336   7.75 0.663 0.725 0.474 0.238 1.450 2.848 4.298   6.48 

  9 0.387 0.524 0.397 0.137 1.058 2.136 3.194   8.24 0.630 0.689 0.468 0.243 1.377 2.844 4.221   6.70 

10 0.348 0.471 0.377 0.148 0.943 2.100 3.043   8.73 0.598 0.654 0.460 0.249 1.308 2.836 4.144   6.92 

15 0.205 0.278 0.283 0.233 0.567 2.064 2.631 12.78 0.463 0.506 0.419 0.288 1.012 2.828 3.840   8.29 

20 0.121 0.164 0.202 0.322 0.339 2.096 2.435 20.03 0.358 0.392 0.372 0.330 0.783 2.808 3.591 10.02 

25 0.071 0.097 0.140 0.303 0.194 1.772 1.966 27.39 0.277 0.303 0.325 0.341 0.606 2.664 3.270 11.79 

 

Table 1b 

Comparison of probabilities when earlier sample came from dead animals (left columns) and non-lethal (right 

columns). Probabilities are the same for PO when d�R and for GP when d�B+R and always for HS. 

S =  90 Probability alive 0.95 Probability alive 

d S
d PO PO GP GP S

d PO PO GP GP 

8 0.430 0.582 0.682 0.663 0.725 0.774 

9 0.387 0.524 0.713 0.630 0.689 0.786 

10 0.348 0.471 0.742 0.598 0.654 0.796 

15 0.205 0.278 0.610  0.463 0.506 0.767  

20 0.121 0.164 0.487 0.322 0.375 0.358 0.392 0.722 0.330 0.345 

25 0.071 0.097 0.363 0.303 0.503 0.277 0.303 0.658 0.341 0.409 

30 0.042 0.057 0.259 0.246 0.550 0.214 0.234 0.586 0.329 0.463 

40 0.015 0.020 0.121 0.133 0.460 0.129 0.140 0.442 0.276 0.521 

50 0.005 0.007 0.053 0.062 0.296 0.077 0.084 0.320 0.212 0.511 

 

Table 2a 

HS-LOD score for PO relatedness of North-Atlantic fin whales using 15 

micro-satellite DNA loci. Optimal LOD critical value for a given 

population size per parent alive (N/nR). True detection (T) and false 

positive detection (F). Divide column CV�np by �np to obtain 

approximate expected CV. 

LOD T' T F' F N/nR CV�np 

9.0 0.150 0.379 1.31E-06 8.88E-07 247,112 1,013 

8.0 0.189 0.563 7.99E-06 5.11E-06 41,697 319 

7.5 0.204 0.657 1.96E-05 1.18E-05 16,723 181 

7.4 0.165 0.674 1.89E-05 1.37E-05 13,622 160 

7.3 0.181 0.692 2.44E-05 1.61E-05 11,392 144 

7.2 0.196 0.711 3.17E-05 1.93E-05 9,327 128 

7.1 0.157 0.727 3.03E-05 2.23E-05 7,630 113 

7.0 0.188 0.746 4.34E-05 2.67E-05 6,287 101 

6.9 0.150 0.761 4.14E-05 3.08E-05 5,130 90 

6.8 0.178 0.779 5.91E-05 3.67E-05 4,211 80 

6.7 0.156 0.795 6.31E-05 4.30E-05 3,393 71 

6.6 0.136 0.808 6.56E-05 4.96E-05 2,788 63 

6.5 0.160 0.824 9.33E-05 5.89E-05 2,276 56 
6.0 0.125 0.887 1.95E-04 1.27E-04 785 31 

Table 2b 

PO-LOD score for PO relatedness of North-Atlantic fin whales. 

LOD T' T F' F N/nR CV�np 

13.0 0.122 0.442 2.75E-7 2.73E-7 980,526 1,886 

12.0 0.126 0.581 7.73E-7 8.40E-7 308,305 875 

11.0 0.114 0.716 1.90E-6 2.30E-6 98,154 425 

10.0 0.090 0.829 4.06E-6 5.62E-6 31,549 215 

  9.0 0.060 0.911 7.37E-6 1.20E-5 10,338 114 

  8.9 0.063 0.917 8.59E-6 1.29E-5 9,326 107 

  8.8 0.066 0.923 9.94E-6 1.39E-5 8,317 101 

  8.7 0.057 0.929 9.49E-6 1.48E-5 7,398 94 

  8.6 0.054 0.934 9.92E-6 1.58E-5 6,633 89 

  8.5 0.046 0.939 9.30E-6 1.67E-5 5,973 84 

  8.4 0.048 0.944 1.07E-5 1.78E-5 5,417 80 

  8.3 0.045 0.948 1.11E-5 1.89E-5 4,872 75 

  8.2 0.047 0.953 1.27E-5 2.02E-5 4,349 71 

  8.1 0.040 0.957 1.20E-5 2.14E-5 3,872 66 

  8.0 0.037 0.961 1.24E-5 2.27E-5 3,479 63 

  7.0 0.019 0.986 1.71E-5 3.70E-5 1,200 36 
  6.0 0.007 0.997 1.73E-5 5.30E-5 423 21 



DISCUSSION

The objective method proposed here for choosing an optimal
screening criterion in relatedness analyses has ignored the
uncertainty in the calculations of the false positives F(c) and
detection ratios T(c). These might affect the choice of the
optimal c and would probably best be studied with
simulations or resampling of the allele frequency data.
However, choosing a higher detection ratio (close to 1) and
therefore relatively more precise, will lead to a larger number
of false positives and less precision there, and vice versa, so
these factors may balance out over some range. 

For the PO pairs that are false positives, too little age
difference would be expected in about 50% of the cases. Age
readings from earplugs were available for the sample used
in the example here, but based on these none of the pairs
could be excluded (Gunnlaugsson et al., 2010). In such a
case the derivation of the optimal criterion could be modified
to take advantage of this by using mF = 0.5np F(c). In
situations where mtDNA is available it can be used to
exclude some false positives in maternal-offspring
relatedness so a different LOD score criterion might be used
for such pairs. In cases where one parent has been identified
or is known (such as mother foetus pairs) there is also more
power to identify the other parent and its relatives.

The Petersen population estimate was used here for
simplicity, but the refined less biased version with m replaced
by m+1 is generally recommended. The CV2 is then
approximated by (m+1)/((mT+1)(mT+2)) and the optimal
critical value c is no longer independent of the sample size.
The effect is larger when np is small (and therefore m small).
Then a somewhat higher critical value should be investigated,
in particular when the emphasis is on getting a safe lower
bound for the population rather than a point estimate.

An alternate approach is to include (sum over) all pairs,
but weight down poorer matches, and thereby avoid the need
to choose a critical value. For a pair with LOD score x the
likelihood of a positive is T′(x) nR np/N and a negative F′(c)np.
A natural weight is the probability that this pair is positive

which therefore is T′(x)/[T′(x)+F′(x) nRN]. This requires
access to and processing of all the data and the problem is
here again that N needs to be known, but supposedly N is to
be estimated from the obtained mT so iteration is also needed
here. The variance should be smaller and could be obtained
through resampling.
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Table 3 

HS-LOD score for North-Atlantic fin whales assuming tripled the 

presently available 15 micro-satellite DNA loci. Optimal value for a 

given population size per available older half-sibling (N/nR). True 

detection (T) and false positive detection (F). Divide column CV�np by 

�np to obtain approximate CV. 

LOD T' T F' F N/nR CV�np 

13.0 0.052 0.179 1.17E-8 1.06E-7 928,881 2,834 

12.0 0.062 0.241 3.81E-8 3.61E-7 319,239 1,400 

11.0 0.071 0.313 1.18E-7 1.17E-6 109,791 703 

10.0 0.078 0.395 3.53E-7 3.62E-6 37,057 355 

  9.0 0.081 0.482 1.00E-6 1.07E-5 12,753 184 

  8.8 0.096 0.500 1.44E-6 1.34E-5 10,336 162 

  8.6 0.089 0.518 1.65E-6 1.65E-5 8,289 142 

  8.5 0.082 0.526 1.66E-6 1.81E-5 7,463 134 

  8.4 0.089 0.535 1.99E-6 2.01E-5 6,764 126 

  8.3 0.087 0.544 2.15E-6 2.23E-5 6,071 118 

  8.2 0.096 0.553 2.63E-6 2.49E-5 5,429 111 

  8.1 0.089 0.562 2.70E-6 2.76E-5 4,849 103 

  8.0 0.086 0.571 2.88E-6 3.05E-5 4,363 97 

  7.8 0.094 0.588 3.85E-6 3.75E-5 3,543 86 

  7.5 0.088 0.614 4.88E-6 5.04E-5 2,579 71 

  7.0 0.086 0.656 7.80E-6 8.23E-5 1,516 52 
  6.0 0.077 0.735 1.91E-5 2.11E-4 527 29 

 


