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ABSTRACT

We compare the sensitivity of the estimated effective strip half-width with respect to choice of hazard probability function (Q). This is done by
fitting the model under an erroneous assumption about the parametric form of Q, and comparing the estimated and true effective strip half-width.
An ‘infinite sample size’ setting is employed, where fitting the model by maximum likelihood amounts to minimising the Kullback Leibler distance
between the assumed and true models. The experiment is carried out in a situation that is relevant to minke whale sighting surveys both in the
Antarctic and in the northeastern Atlantic. It is found that the hazard probability model is fairly robust with respect to the choice of parametric class
for Q. The largest observed bias in the resulting effective strip half-width is less than 10%, while for most situations there is almost no bias.
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α αf (x, y) = vw Q(x, y) exp (– v ∫y
∞ Q(x, u) du), 0 ≤ x ≤ W, y ≥ 0,

where w is the effective strip half-width given by

αw = ∫0
W g(x)dx = ∫0

W [1 – exp {– v ∫0
∞ Q(x, y) dy}]dx.

Observations falling outside the observation strip (0, W) are
discarded.

There are typically two or more independent observers 
(or observer platforms). In the common minke whale
(Balaenoptera acutorostrata) surveys in the northeastern
Atlantic a symmetric two-platforms design is used (Skaug et
al., 2004), while in the surveys for Antarctic minke whales
(B. bonaerensis), three platforms, with a partly asymmetrical
configuration, have been used (Okamura et al., 2003). For
simplicity, we shall adhere to the setting of Skaug et al.
(2004) and assume that there are two independent observers,
which we denote by A and B, having the same Q function.
The combined observer A ∪ B, i.e. viewing A and B as being
a team, has hazard probability function 

QA∪B = QA + AB – QAQB = 2Q – Q2.

To get expressions for g(x), f(x, y) and w for the combined
observer A ∪ B we can directly insert in the above formulae.
Further, each animal detected by sets up an experiment with
trinomial outcome u ∈{A, B, AB}. Conditionally on the
position (x, y) the probability distribution of u is 

QA(x, y){1 – QB(x, y)}, u = A;
q(u | x, y) = {QA∪B(x, y)}–1 { QB(x, y){1 – QA(x, y)}, u = B;

QA(x, y)QB(x, y), u = AB.

Via the above formulae, the true hazard probability function
QT and its approximation Q* induce two different probability
distributions for the datum (x, y, u). The KL distance between
these distributions is given as
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INTRODUCTION

The hazard probability model has been used within the
International Whaling Commission’s Scientific Committee
to model independent observer line transect data for minke
whales, because it directly takes into account the discrete
availability of the animals (Okamura et al., 2003; Skaug et
al., 2004). The hazard probability function Q(x, y) is defined
as the probability of observing a cue that occurs at relative
position (x, y), given that the observer is not previously aware
of the whale. Here, x and y are perpendicular and forward
distances (km), respectively. The purpose of the present
paper is to study how sensitive quantities such as the
effective strip half-width and the perpendicular distance
density are to the choice of . For this purpose, we perform a
pairwise comparison of four alternative parametric families
for Q. For each comparison we take one Q as being the truth,
with the other being treated as an approximation (Q*). We
then tune the parameters of Q* such that the Kullback-
Leibler (KL) distance between the models is minimised 
and finally we compare the corresponding effective strip
half-widths, w and w*.

MATERIAL AND METHODS

Hazard probability model for independent observers

Consider first a single observer with hazard probability
function Q(x, y), and assume that the whales are stationary
(do not move) and surface according to a Poisson process.
The detection function, i.e. the probability of detecting a
whale that is present at perpendicular distance x, is given as

αg(x) = 1 – exp (– v ∫0
∞ Q(x, y) dy),

where α is the surfacing rate of the whale, and v is the speed
of the observer. The probability density of the relative
position of the initial observations is given as
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fT(x, y, u)KL = Σ
u

∫0
∞ ∫0

W log f*(x, y, u)
fT(x, y, u)dxdy (1)

qT(u | x, y) fT(x, y)
= Σ

u
∫0

∞ ∫0
W [log q*(u | x, y)

+ log f*(x, y) ] fT(x, y, u)dxdy

fT(x, y)
= ∫0

∞ ∫0
W KL(u | x, y) fT(x, y)dxdy + ∫0

∞ ∫0
W log f*(x, y)

fT(x, y)dxdy,

where

Σ qT(u | x, y)KL (u | x, y) =
u = A,B, AB

log q*(u | x, y)
qT(u | x, y).

Here, we have exploited that f(x, y, u) = q(u | x, y) g(x, y). In
the expression for KL above, g denotes the density based on
QA∪B. 

Experimental setup

The four parametric forms Q1 – Q4 considered are shown in
Table 1. Each Q was in turn taken to be the true model (QT ),
while treating the three others as approximating models
(Q*). For a given QT the parameters of Q* were chosen 
so that the KL distance (1) was minimised. The practical
interpretation of this is to use maximum likelihood
estimation under an erroneous model assumption, in a
situation where an infinite amount of data (from the correct
model) is available. The data being fit to consisted of two
parts: (i) the initial position for the combined observer A ∪
B, i.e. the position (x, y) where the whale was first detected
(regardless of whether it was A, B, or both that actually made
the detection); and (ii) the outcome u ∈{A, B, AB} of the
trinomial trial. Observations falling outside a strip (–W, W)
were discarded. 

The parameter values used as the ‘true values’ for each of
the four functions are given in the first column of Table 2.
For Q1 – Q3 – these values were based on Antarctic minke
whale data (CP 3, Area 5, Okamura and Kitakado, 2009a)
and for Q4 the parameter values were based on northeastern
Atlantic minke whale data (Skaug et al., 2004). In the
Antarctic setting (three upper panels of Table 2) we truncated
at W = 2 km, while W = 1 km was used in the bottom panel
of Table 2 due to the much shorter effective strip half-width
in the Northeastern Atlantic. The vessel speed was taken to
be 11.5 knots, and mean surfacing rate was 48 surfacings per
hour.

The numerical minimisation of the KL distance, with
respect to the parameters of Q*, was done in Matlab. All
integrals occurring above were evaluated using numerical

integration in Matlab (precision 10–6) as well. The integration
range in the forward direction (y) was 0–6 km, except for the
bottom panel of Table 2, where the range was 0–3 km.

The parameter of main interest for animal abundance
estimation was, because the abundance estimate is inversely
proportional to the estimate of w. Often, it is the single
observer version of w, as opposed to wA∪B, that is being used
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Table 1

Different hazard probability functions used in the study: Q2 and Q3 are from Okamura and Kitakado (2009) while Q4 is 
from Skaug et al. (2004). Here, (r, θ) denotes polar coordinates, with r = √x2 + y2 is radial distance and θ ∈[0, π] is the 
angle relative to the forward direction. Parameter values are given in Table 2.

Parametric form Parameter constraints

Model 1 Q1(x, y) = (1 + exp(σxxγx + σyyγy + τ))–1 σx, σy, γx, γy > 0

Model 2 Q2(r, θ) = (1 + exp(σrrγr + σθθγθ + τ))–1 σr, σθ, γr, γθ > 0

Model 3 Q3(r, θ) = exp(–σrrγr – σθθγθ – τ) σr, σθ, γr, γθ τ > 0

Model 4 Q4(r, θ) = μ l [ – λr (r – ρr)] l [ – λθ (θ – ρθ)] , l [x] =   exp(x) λr, λθ > 0, 0 < μ ≤ 1
l [ λr ρr ] l [ λθ ρθ ] 1 + exp(x)

Table 2

Parameter estimates of approximating models (columns 2–4) that minimise
the KL distance to the true model (column 1).

True model Approximation

Model 1 Model 2 Model 3 Model 4

σx 1.1779 σr 0.1995 σr 0.1704 λr 0.8029
σy 0.0354 σθ 3.3828 σθ 2.5958 λθ 1.3408
γx 1.0000 γr 1.6901 γr 1.7262 ρr 0.3086
γy 2.5100 γθ 0.2452 γθ 0.3048 ρθ –81.8074
τ 1.1840 τ –0.9196 τ 0.0000 μ 0.5531
w 0.9960 0.9252 0.9212 1.0903

g(0) 0.8463 0.9953 0.9962 0.8950
KL 0.0109 0.0128 0.0379

Model 2 Model 1 Model 3 Model 4

σr 0.7856 σx 2.5982 σr 0.5722 λr 0.8001
σθ 1.0811 σy 0.1216 σθ 0.9661 λθ 2.0854
γr 1.0000 γx 0.0687 γr 1.1204 ρr 0.0201
γθ 1.5360 γy 1.8768 γθ 1.5574 ρθ 0.5905
τ 0.2940 τ –0.6814 τ 0.7782 μ 0.3954
w 1.0156 1.1459 1.0113 0.9972

g(0) 0.7940 0.9956 0.8016 0.7840
KL 0.0305 0.0001 0.0001

Model 3 Model 1 Model 2 Model 4

σr 0.5362 σx 0.1549 σr 0.7632 λr 0.8388
σθ 0.9158 σy 0.1436 σθ 1.0127 λθ 2.3433

r 1.1800 γx 2.5193 γr 1.0428 ρr –0.0756
γθ 1.6930 γy 1.8313 γθ 1.7125 ρθ 0.6965
τ 0.6460 τ 1.3817 τ 0.1259 μ 0.5195
w 1.1265 1.2564 1.1291 1.1237

g(0) 0.8472 0.7091 0.8322 0.8493
KL 0.0227 0.0002 0.0001

Model 4 Model 1 Model 2 Model 3

λr 5.0000 σx 2.2041 σr 2.2290 σr 1.7967
λθ 5.7296 σy 1.9247 σθ 0.0832 σθ 0.0247
ρr 0.6923 γx 1.8436 γr 1.7725 γr 2.0347
ρθ 1.6183 γy 1.9934 γθ -0.0073 γθ 6.7873
μ 0.3700 τ 0.5042 τ 0.2769 τ 0.8671
w 0.3151 0.3226 0.3346 0.3183

g(0) 0.4519 0.4616 0.4551 0.4672
KL 0.0043 0.0060 0.0025



in the abundance calculation (e.g. Skaug et al., 2004). So,
although the parameters were estimated from double
platform data, we measured the goodness of fit using single-
observer versions of w, g(0), and perpendicular distance
density f(x) = ∫0

∞ f(x, y)dy. As a diagnostic for the fit to the
trinomial trials we used, q(AB | x, y), i.e. the probability that
both observers detect the whale simultaneously. 

RESULTS AND DISCUSSION

Table 2 shows parameter estimates, i.e. the values that
minimises the KL distance, for all pairwise comparisons of
the four hazard probability functions. The corresponding
comparisons of the perpendicular distance densities f(x) are
given in Fig. 1. This figure also gives the ratios wT / w*,
which are the key quantity of interest in the present study.
When interpreting the density plots it is useful to recall that

wT =
gT(0)

.
f*(0) 

.w* g*(0) fT(0)

A misfit in f(x) at x = 0 can partly be compensated for by a
counteracting misfit in g(0). An example of this is Truth =
Q1 and Approx. = Q2 for which g1(0)/g2(0) = 0.85 (Table 2)
and f2(0)/f1(0) = 1.27, yielding w1/w2 = 1.08. Hence, the
perpendicular distance density is not fully diagnostic, and
the ratio f*(0)/fT(0) does not play the same critical role as it
does when g(0) = 1 is assumed. Another example of this
occurs when Truth = Q4 and Approx. = Q1, for which the two

density curves are almost identical (Fig. 1; lower left corner).
The proportion of (u = AB), on the other hand, indicate that
there is a misfit (Fig. 2; lower left corner). In a 45 degree
sector from the transect line the true model predicts a higher
proportion of duplicates than the approximating model (light
colored area in the plot), and correspondingly there are too
few duplicates in the remaining 45 degree sector.

It is clear from both Figs 1 and 2 that Q1 differs from Q1 –
Q4, while Q2 – Q4 between themselves yield models with
very similar properties. The reason for this is that Q1 is
formulated in Cartesian coordinates (x, y), while Q2 – Q4 are
formulated in terms of polar coordinates (r, θ). In particular,
Q2 – Q4 can all be written in the separable form h1 {h2(r)h3

(θ)}, where h1 is a decreasing function, and h2 and h3 are
increasing functions. 

Generally speaking Q1, predicts more observations close
to the vessel than do Q2 and Q3. This holds both when Q1 is
taken to be the truth (first row of Fig. 1) and when Q1 is being
fitted (first column of Fig. 1). Further, Q2 and Q1 behave very
similarly in the comparison with Q1, also when it comes to
the ratios wT /w* (Fig. 1) and qT(AB | x, y) /q*(AB | x, y) (Fig.
2). The picture is less clear for the comparison of Q1 versus
Q4. It is worth noting that the effective strip half-width is
over estimated, both when Q1 is taken as the truth (w1/w4 =
wT /w* = 0.91) and when Q4 is taken as the truth (w4/w1 =
wT /w* = 0.98) .

From a conservation perspective a negative bias in is more
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Fig. 1. Comparison of perpendicular distance (km) densities for true (dashed line) and approximating density (solid line), where x is the perpendicular distance.
The corresponding ratios of effective strip half widths (w) are also given.



critical than a positive bias, because the former will lead to
a positive bias in the abundance estimate. The most severe
underestimation of w found in the present experiment is
w1/w3 = wT /w* = 1.08 (Fig. 1; upper row, second column
from right). This occurs when Q1 is the truth and Q3 is the
approximation. For this case Q3 predicts a too large
proportion of duplicate sightings (seen by both A and B) at
short radial distance (Fig. 2 upper row, second column from
right). The case with the largest over-estimation of w is w1/w4

= 0.91.
Within each row in Table 2 the smaller the KL distance is,

the closer wT /w* is to unity. This means that model selection
based on a likelihood ratio test, or the AIC criterion, will
perform reasonable well for the purpose of picking a model
that yields an unbiased estimate of w. The value of the KL
statistic does not say anything about the direction of the bias
of the estimated w, however.

CONCLUSION

For the purpose of estimating the effective strip half-width
(w) the hazard probability model is fairly robust with respect
to choice of Q. For all 12 pairwise comparisons considered
in this study the fitted w falls within 10% of the true value
in all cases. Strictly speaking these conclusions apply only
to the version of the hazard probability model used in Skaug
et al. (2004), and it has not been investigated they hold in
the setting of Okamura et al. (2003).

We have chosen to use an infinite sample-size setting,
which allowed bias arising from mis-specification of Q to be
separated from the finite-sample properties of the maximum
likelihood estimator. The latter can be studied by simulating
data from the hazard probability model, and then applying
the estimator on each simulated dataset. This has recently
been done for the method of Okamura et al. (2003) which
did not show any severe biases as a result of finite sample
size alone (Okamura and Kitakado, 2009b).
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Fig. 2. Ratio q(T) (AB | x, y) /q(*) (AB | x, y), where q(T) (AB | x, y) is the probability (under the true model) that a whale which is initially is observed at location
x, y is detected by both A and B (duplicate sighting). Similarly, q(*) (AB | x, y) is the probability under the approximating model. The layout of the plot
corresponds to that in Fig. 1. The darker the cell, the smaller the ratio.


