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ABSTRACT

The standard null model of panmixia used to test for population subdivision is based on a set of assumptions that can be violated given recent events
likely to result in non-equilibrial genetic composition coupled with the complex life histories of many species. Bowhead whales (Balaena mysticetus)
represent such a species. Bowhead whales also have a well-documented history of severe commercial harvest in the recent past which would be
expected to leave a population out of genetic equilibrium. They also have a very long life span, overlapping generations, and age and sex-structured
migrations. In addition, samples come from whales killed in a hunt known to be non-random with respect to size at different whaling villages.
Sampling of such a population could lead to erroneous conclusions regarding population structure, which could have real consequences for aboriginal
whaling. To better interpret the results of standard population genetic analyses, an individual-based model of bowhead whale population dynamics
and genetics was created using the R package rmetasim. The model re-created as closely as possible all aspects of the demography, genetics, and
whaling history of bowhead whales. Simulated datasets were generated by sampling from the simulated population in a way that matched the age,
sex and geographic distribution of empirically collected samples. The empirical bowhead datasets were compared to null distributions generated
from the simulated datasets for a variety of genetic analyses. The analysis indicates that the empirical genetic data sampled from the Bering-Chukchi-
Beaufort (BCB) stock of bowhead whales are more consistent with the model of a population with the same whaling history and demographic
composition as BCB whales than they are with a single, randomly-mating population in genetic equilibrium under a standard Wright-Fisher model.
Additionally, it was demonstrated that by failing to account for the unique features of the population dynamics of the species, standard tests of
genetic differentiation based on panmixia may produce misleading results. The approach outlined will likely prove useful for evaluating population
structure in other species likely to be out of equilibrium.
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native subsistence hunters, with some villages preferring to

kill large (and hence older) whales, while others prefer

smaller (younger) whales (Noongwook et al., 2007; Suydam

and George, 2004). Further, hunting primarily occurs during

migration and often in short time periods, and whales are

known to segregate by size and reproductive condition

during migration (Angliss et al., 1995). Thus, samples of

bowhead whales stratified by sampling location could

represent different demographic components of the

population.

Results of previous analyses of bowhead whales migrating

past Barrow, Alaska have been interpreted to suggest that

more than one stock may exist in the Beaufort-Chukchi-

Bering (BCB) Sea (Jorde et al., 2007). However, these

results could also reflect age stratification of migration.

Bowhead whales can live for over 100 years (George et al.,
1999), thus it is likely that some whales that were born prior

to the end of commercial whaling are still alive today. Their

genes represent frequencies of the unexploited population,

while those of recent cohorts represent the smaller, yet still

diverse, gene pool that survived commercial whaling. These

differences between genetic frequencies of cohorts resulting

from non-equilibrial dynamics are called the Generational

Gene Shift (GGS) hypothesis. In addition to GGS, it has been

demonstrated that both non-random sampling as well as

sampling from age-structured populations can lead to results
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INTRODUCTION

The Wright-Fisher model of population genetics (Fisher,

1930; Wright, 1931) forms the basis of the null hypotheses

describing no population structure for most genetic analyses.

Under this model, the hypothetical single population is

assumed to be at genetic equilibrium (the rate of genetic drift

equals that of mutation), is panmictic (every individual has

an equal chance of mating with every other individual), 

has non-overlapping generations, and experiences no

immigration or emigration. While not an explicit assumption

of the Wright-Fisher model, most studies also assume that

samples have been collected at random and thus accurately

represent the genetic frequency distribution in the population

at large.

In most real populations, one or more of these assumptions

are often not met, potentially leading to problems in

interpreting the results of standard genetic tests. Bowhead

whales (Balaena mysticetus) represent a good example of

such a population. In the late 19th and early 20th centuries,

bowhead numbers were very rapidly reduced by whaling

followed by a recovery in only two and a half generations

(Bockstoce, 1986; Bockstoce and Burns, 1993; Brandon and

Wade, 2006), guaranteeing the population or populations to

be strongly out of genetic equilibrium. Sampling is also not

random. Most samples are from animals killed by Alaskan
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that differ significantly from those expected from a panmictic

population (Waples, 1990; Waples and Teel, 1990; Waples

and Yokota, 2007). It is possible that all of these factors are

present in the bowhead whale data.

In this paper, an individual-based simulation is described

that attempts to both capture the population dynamics that

lead to GGS and non-equilibrial genetic samples, and match

the non-random empirical samples as closely as possible

with respect to birth year and sex. The aim is to generate 

an alternative to the standard null distribution that will 

allow testing for population structure without assuming

equilibrium conditions, panmixia, or random sampling. The

analyses conducted include evaluations of Hardy-Weinberg

equilibrium and measures of population structure (Fst, χ
2,

and Φst) using strata considered possible for bowhead

whales. A single population was simulated and evaluated the

likelihood of obtaining observed results without invoking a

multiple-stock scenario. Issues with applying the approach

to multiple stocks are addressed in the discussion.

METHODS

The simulation is based on the rmetasim package (version

1.1.008 – Strand, 2002), run in the R statistical environment

(version 2.4.1 – R Development Core Team, 2006).

Rmetasim is a library of functions that performs individual-

based population genetic simulations. Each individual has a

multi-locus genotype and a mitochondrial DNA (mtDNA)

haplotype. Individuals are structured demographically with

a stage-based matrix population model (see ‘Demography’

section below; Caswell, 2001). At each time step individuals

are randomly assigned their births, stage transitions and

deaths according to the rates specified in the matrix model

(used as distributions to incorporate demographic

stochasticity). Offspring genotypes are determined by

parental genotypes assuming random mating, independently

segregating alleles, and neutrality of markers. For all

parameters not explicitly defined here the program default

values were used.

During the simulation, a set of individuals are selected to

mimic the 1,099 BCB bowhead whales in the recorded

harvest between 1937 and 2006 (Braund et al., 1988;

Suydam and George, 2004). While the analysis of Braund et
al. (1988) cautioned that ‘these data represent minimum

numbers’ of landed whales and some landed whales likely

went unrecorded, harvest numbers were relatively low in the

1930s-60s and in many years fewer than 10 were taken, so

the overall number of missed harvests through this period

should be very small. Harvests increased significantly in the

1970s, but it is unlikely that any landed whales went

unrecorded, due to careful monitoring by NOAA; however

a few struck but lost whales may not have been reported

during this period. Potential mortalities from these events

were not simulated.

During the last 25 years (and predominantly during the

last decade), tissue samples were collected both from whales

killed during Alaskan subsistence hunts as well as from

biopsies of live whales (O’Hara et al., 1998; Suydam and

George, 2004). As noted above, this sampling was not

random, due to hunting preferences, biopsy opportunities,

and important aspects of bowhead whale migratory

behaviour and distribution. A variety of life history data 

was also collected from many of the whales killed during 

the hunts, some of which were used to characterise the

demographic composition of the simulated population as

described below.

Demography

Rmetasim version 1.1.008 incorporates density dependent

population growth, as described in Martien (2006). Density

dependence is implemented by interpolating between

matrices that represent survival and reproduction rates at

carrying capacity and near zero population density. Although

this version of rmetasim only allows for linear interpolation

between these matrices, the program was modified to allow

for non-linear density dependence. The value of a given

element (the probability of transition between stages) of the

life history matrix in year t is given by:

xt = x0 + (xmax – x0) (1 – (Nt)
z

)K

where:

xt is the value of the element in year t
x0 is the value of the element at carrying capacity

xmax is the maximum value of the element (near zero

population size)

Nt is the size of the population at the start of year t
K is the carrying capacity of the population

z is the shape parameter.

The demographic matrices used for this study are for a stage-

based model with the following 7 stages: 5 juvenile stages

(J1–J5), adult females (F), and adult males (M) (Ripley et
al., 2006). Juvenile stages were added to assure that

individuals did not remain or advance through being

juveniles in a biologically unrealistic way while allowing the

model to avoid having a different stage for all 120 ages (most

of which have identical probabilities of birth and death).

Stage transition probabilities were calculated using the fixed

stage duration method (Caswell, 2001). The life history

parameter estimates presented in Brandon and Wade (2006)

were used to develop two matrices, one for which the

intrinsic population growth rate λ = 1.00, the other for which

λ = 1.042 (Table 1). These matrices were used to represent

vital rates (age at sexual maturity, juvenile and adult survival,

timing of transition from juvenile to adult survival rates, and
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Table 1

Demographic parameters at carrying capacity (λ=1.00) and near zero
population size (λ=1.042). For each stage, stage duration (T) and age-
specific survival (σ) are used to calculate the matrix model parameters P
(survival in stage) and G (stage transition probability) according to the fixed
stage duration model (Caswell 2001; Ripley et al. 2006).

λ=1.00 λ=1.042

Stage T σ P G T σ P G

J 1 4 0.800 0.661 0.139 2 0.925 0.490 0.435
J 2 4 0.978 0.741 0.236 3 0.985 0.675 0.310
J 3 4 0.978 0.741 0.236 3 0.985 0.675 0.310
J 4 4 0.978 0.741 0.236 3 0.985 0.675 0.310
J 5 4 0.978 0.741 0.118 3 0.985 0.675 0.155
F 50 0.978 0.967 0.011 50 0.985 0.981 0.004
M 50 0.978 0.967 0.011 50 0.985 0.981 0.004



reproductive rates) at carrying capacity and near zero

population size, respectively. z was set to 4, which is the

posterior median from Brandon and Wade’s (2006) backward

projection model (referred to as ‘1848DD’ in their paper).

Genetic initialisation and burn-in

The simulated populations were initialised using

mitochondrial haplotype and microsatellite allele frequency

distributions generated by the coalescent program SIMCOAL
v2.1.2 (Laval and Excoffier, 2004). Initialising from a

coalescent rather than with random allele and haplotype

frequencies greatly reduced the number of generations

required for the simulations to reach equilibrium (Martien et
al., 2009). In order to initialise SIMCOAL, the average

effective population size (Ne) at carrying-capacity was

estimated using rmetasim. 

The relationship between a change in heterozygosity and

effective population size is given by,
t

E [ Ht ] = (1 –
1 )

g

H0 2Ne

where:

H0 = initial heterozygosity

Ht = heterozygosity at time t
t = elapsed time in years

g = generation time

After rearranging the above and including a multiplier (m)
chosen to start the simulation burn-in phase close to

equilibrium, Ne was estimated as, 

Ne =
m

g

2.(1 – ( Ht )
t )H0

A generation time (g) of 37 years was used, representing the

average age of reproductive females (Taylor et al., 2007). A

value for m of 1.45 was empirically found to be satisfactory

and was used in all simulations. Ne was estimated for

mtDNA and microsatellites separately. For microsatellites,

the above equation actually estimates 2Ne, which is the value

required by SIMCOAL. The average effective population size

(Ñe) used to initiate SIMCOAL was the harmonic mean of Ne
from 20 rmetasim population projections at carrying

capacity, each initialised with the same survival and

reproduction matrices as in the full simulation, and lasting

4,000 years (t). The sample size generated by SIMCOAL

was Ñe for the mtDNA sequences and the smaller of Ñe and

1,000 for the microsatellite loci. 

Parameters for both mtDNA sequences and microsatellite

loci were set to mimic the empirical data as closely as

possible. The mtDNA sequence was specified to be 397bp,

with a Ts:Tv of 10:1, and a mutation rate of 9.4×10–3 (LeDuc

et al., 2005; LeDuc et al., 2008). For the microsatellites, two

groups of loci were simulated representing 11 ‘original’ loci

which were typed from a variety of different cetaceans

including bowhead whales, and 22 ‘new’ loci which were

screened from a CA-enriched library using bowhead whale

samples. A detailed description of the development of these

two sets of loci can be found in Givens et al. (2010) and

Huebinger et al. (2006). Average mutation rates were set at

3.0×10–4 and 1.5×10–3 for the original and new loci

respectively. Mutation parameters were tuned to produce

diversity comparable to that observed in the empirical

bowhead dataset, as has been done previously (Taylor et al.,
2000). The same mutation rates that were used in rmetasim
were used in the SIMCOAL initialisations.

In order to ensure that the simulated populations were in

equilibrium, a burn-in phase was conducted following

initialisation. Previous examinations of the trajectories of the

number of mtDNA haplotypes, microsatellite alleles, and

heterozygosity in both markers indicated that 4,000 years

was a sufficient amount of time to ensure that these values

were relatively stable (Fig. 1). A sample of all markers was

independently generated from SIMCOAL for each burn-in

replicate.

Simulated whaling and sampling

For each burn-in replicate, multiple replicates of simulated

harvest of whales designed to mimic the historical kill were

conducted. The historical kill encompasses the commercial

harvest and Russian and Alaskan subsistence catches from

1848 to 2006. The harvest data used in the model are the

same data being used in the IWC Aboriginal Whaling

Management Plan (IWC, 2003). In each year of a whaling

replication, the first whales removed from the simulated

populations were those included in the empirical genetic

dataset. These consisted of whales for which biological

samples and measurements were collected from the Alaskan

subsistence catch (available from 1974 to 2006). For each

sampled whale in the empirical dataset, an individual of the

same age and gender was randomly selected from the

simulated population. If the gender of the sampled whale was

unknown, then it was randomly selected using the ratio of

known-gender whales killed in that year. A 50:50 ratio was

assumed if no known-gender whales were available in a

particular year (empirical sex ratio for all whales harvested

from 1974–2006 for which sex was identified was

487(F):468 (M), i.e. very close to parity). 

In order to match the age of simulated individuals to those

of harvested whales, the age of each harvested whale was

determined in a hierarchical fashion based on the quality of

data available. Many of the whales included in the empirical

dataset were aged and had estimates of standard errors from

one of the methods given in Lubetkin and Zeh (2006). For

these whales, ages were randomly sampled from a normal

distribution and rounded to the nearest whole age. 

For whales that were not aged, a Classification and

Regression Tree (CART – Breiman et al., 1984), as

implemented in the R package rpart v3.1–34 (Therneau and

Atkinson, 2006), was used to estimate the age bin to which

they belonged based on morphological characteristics

(gender, body length, baleen length, anterior flipper length,

peduncle girth, and length of the peduncle white patch). The

CART tree was created from 177 known-aged samples using

ten age bins (Fig. 2), which were selected from an

exploratory series of CART regression trees. Bins were

selected probabilistically based on the distribution of bin

membership from the training data in the node to which an

unknown sample was assigned (Table 2). The age for each

sample was then chosen at random from all individuals in

the simulated population within the chosen age bin. If the
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morphometric data necessary to classify a sample at a

particular split in the CART tree was missing, surrogate

variables were used if available. If there was insufficient

morphometric data for the CART algorithm, then an age was

chosen at random from the simulated population. In all cases,

the age distribution being chosen from was that of the

simulated population immediately following burn-in, which

was considered a stable age distribution.

In some cases, no individuals in the simulated population

were found to match the age and gender of a harvested whale

exactly. When this occurred, all individuals within a

progressively increasing age window around the whale under

consideration were examined. In each age window,

probabilities were assigned to each individual based on their

gender and the size of the window. The probability of

choosing an individual of the same sex as the sample under

consideration ranged from one for an age window of zero

(all simulated individuals were of the same age as the

sampled whale) to 0.5 when all individuals in the population

were considered. The probability of choosing an individual

of the opposite sex was one minus this value. If no

individuals in the window had probabilities greater than a

randomly chosen value, then the age window was increased

and the new set of individuals were reconsidered. In this

manner, all simulated individuals were matched to a unique

sampled whale.

Following the removal of any biologically sampled

whales, the un-sampled portion of the recorded catch in that

year was then removed from the simulated populations. In

all cases, whaling was restricted to individuals older than one

year. The genetic data of the simulated whales selected to be

killed each year were saved if genetic data were available for

their matched harvested counterparts. If biopsies were

collected in a given year, the genetic data of an equivalent

number of randomly selected simulated individuals still alive

in the population were also saved. Following a simulated

year of whaling and sampling, the population was projected

forward one year and the whaling for the next year would

occur as described above. 

In order to ensure that the abundance trajectories from the

simulations were similar to those of historical trend analyses

(Brandon and Wade, 2006), two abundance ‘gates’ were
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Fig. 1. Mean values (solid lines) and 95-percentiles (dashed lines) for number of haplotypes (mtDNA) and alleles (microsatellites), heterozygosity, and Theta
(θ)-h during 50 burn-ins. 



established that replicates had to pass through. Replicates

that had trajectories outside of the 99% confidence intervals

of the first and last years of estimated population abundance

(1978 and 2001), including those that went extinct, were

discarded. For each of 50 burn-in replicates, the first ten

successful whaling replicates were saved, producing a total

of 500 replicates. The final output of each replicate was a

simulated genetic sample representing the demographic

composition of the empirical harvest sample and all

individuals surviving in each of the simulated populations.

Annual population abundances were saved for comparison

with trajectories from historical trend analyses (Brandon and

Wade, 2006).

Introduction of errors

Microsatellite datasets inevitably contain genotyping errors.

Error rates reported in the literature range from 0.1% to 48%

(Morin et al., 2009). To examine the effect of genotyping

errors on the analytical methods applied to the bowhead

whale dataset, genotyping errors were introduced into the

simulated dataset. By comparing genotypes for duplicate

samples included in the original empirical dataset, Morin et
al. (2009), estimated an overall error rate of 0.01 for the

bowhead whale microsatellite data. Of these, 40% were

apparent cases of allelic dropout, i.e. the individuals were

scored as homozygotes in one genotyping attempt and as

heterozygotes in another.
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Fig. 2. CART tree with primary splits used for age estimation. Cases meeting the criteria at a node are sent down the left.
Roman numerals are leaf identifiers corresponding to rows in Table 2. Values below leaf identifiers are estimated age bin of
leaf.

Table 2

Probability of assignment to age bins for leaves of the CART tree in Fig. 2. Bins are inclusive of the lower boundary.

Age bin

Leaf < 3 3-5 5-10 10-18 18-26 26-37 37-50 50-60 60-90 ≥ 90

I 0.84 0.11 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00
II 0.00 0.86 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00
III 0.21 0.21 0.36 0.21 0.00 0.00 0.00 0.00 0.00 0.00
IV 0.00 0.06 0.88 0.00 0.00 0.00 0.06 0.00 0.00 0.00
V 0.00 0.00 0.36 0.57 0.00 0.00 0.07 0.00 0.00 0.00
VI 0.00 0.00 0.33 0.00 0.50 0.17 0.00 0.00 0.00 0.00
VII 0.00 0.00 0.00 0.33 0.17 0.50 0.00 0.00 0.00 0.00
VIII 0.00 0.00 0.00 0.13 0.53 0.27 0.00 0.00 0.07 0.00
IX 0.00 0.00 0.00 0.00 0.00 0.53 0.29 0.18 0.00 0.00
X 0.00 0.00 0.00 0.00 0.00 0.14 0.43 0.29 0.00 0.14
XI 0.00 0.00 0.00 0.11 0.00 0.00 0.22 0.11 0.22 0.33
XII 0.00 0.00 0.00 0.00 0.00 0.11 0.11 0.11 0.67 0.00
XIII 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.17 0.17 0.50



The number of genotyping errors introduced into a

simulated dataset was determined by drawing a random

deviate from a binomial distribution given the overall error

rate (0.01) and the number of alleles in the dataset (18,314).

The alleles to which the errors were applied were chosen at

random from the entire dataset. When an error occurred, it

had a 0.4 probability of being an instance of allelic dropout,

in which case the allele in question was set equal to the other

allele the individual possessed at that locus, making the

individual homozygous at that locus. Otherwise, the allele

was replaced by a different allele chosen at random from the

allele frequency distribution for the appropriate locus.

Genetic analyses

A suite of standard population genetic algorithms were used

to analyse both the genetic samples from the simulations as

well as the matching empirical genetic data. Genepop v3.3

(Raymond and Rousset, 1995) was used to run the Hardy-

Weinberg test of heterozygote deficiency on the 213 samples

from Barrow using both the 11 ‘original’ and 22 ‘new’ loci.

For this test, an MCMC burn-in of 30,000 iterations was

used, with a final chain length of 10,000 and batch size of

100. The Hardy-Weinberg disequilibrium was also calculated

across all loci using Fisher’s method (Ryman and Jorde,

2001).

To examine the effects of GGS, several stratification

schemes were used. In the first, in order to examine the

magnitude of extreme GGS, samples were stratified into

three age cohorts based on the year of catch and the

estimated ages of the samples (George et al., 1999; Lubetkin

and Zeh, 2006; Rosa et al., 2004). The first stratum was

composed of animals born prior to 1950, encompassing

animals born during the low point in the population’s history

(prior to 1918). The second stratum, those born 1950–79,

represented animals born during the rapid growth phase. The

final stratum was those born after 1979, representing animals

born recently during the period when most of the samples

were taken. 

Additionally, to replicate actual analyses that have been

conducted previously, stratifications based on sampling site

(Barrow versus St. Lawrence Island) were also examined, as

well as those based on season of collection (spring or

autumn) at each of those sites. Fig. 3 shows the distribution

of body lengths of samples from each of these three

stratifications.

For the village and season comparative tests, all empirical

samples were used. For the tests comparing cohorts only

whales that were actually aged were used in order to reduce

the large uncertainties that are introduced when using length

to approximate age.

The Fst for mtDNA and microsatellites was calculated

following Weir and Cockerham (1984), and χ2 for both sets

of markers was calculated following Roff and Bentzen

(1989). The AMOVA Φst metric was calculated for mtDNA

data using the R package ade4 (Chessel et al., 2004). 

For each test, the empirical test statistic was compared to

null distributions generated by 500 replicates of standard

permutation methods (representing a null model of

panmixia) and the distribution generated by the simulation.

For both comparisons, p-values reported in this paper refer

to the proportion of replicates with test-statistics equalling

or exceeding the value obtained from the empirical data

using the same (matched) samples; p-values ≤0.05 were

considered to indicate empirical results inconsistent with the

model.

To evaluate the relative support for the panmixia and

simulation null models, the ratio between the likelihoods of

each model given the empirical data for each pairwise test

conducted was calculated. In order to estimate likelihoods,

a Gamma distribution (chosen because of its’ relative

flexibility) was fitted to the distribution of test statistics from

replicates in each null model. As both Fst and Φst can have

negative values, each null distribution was rescaled to have

a minimum value of zero prior to fitting the gamma. Using

the estimated parameters of the gamma distribution the

likelihood of the observed test statistic plus the fixed

rescaling constant was then calculated. Finally, the log of

likelihood(data|panmixia)/likelihood(data|simulation) was

calculated. Log-likelihood ratios less than one support the

simulation model, while those greater than one support the

panmixia model.

RESULTS

Simulation diagnostics

The population trajectories for the 500 replicates are given

in Fig. 4. At the nadir, the median abundance was 1,197 with

a range of 806–1,608. Four percent of the replicates ended

with an abundance greater than 12,000 in 2006. Fig. 5 shows

the distribution of ages within each stage at the end of burn-

in (a) and at the end of the simulation (b). The mean age of

all reproductive individuals was 48 (95-percentile = 13–129)

at the end of burn-in and 33 (95-percentile = 12–76) at the

end of the simulation. At the end of the simulation,
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Fig. 3. Distribution of body length of samples stratified by sampling site,
and season of collection within each site. Numbers above each
distribution indicate sample size. ‘SLI’ = St. Lawrence Island.



approximately 48% of the individuals were reproductive

adults and the sex ratio was not significantly different from

50:50.

Genetic diversity of the empirical data, as measured 

by the number of alleles (haplotypes for mtDNA),

heterozygosity, and ΦH, was similar to the distributions of

these metrics from the matched simulated samples (Fig. 6).

Only measures of heterozygosity and ΦH for mtDNA were

outside of the simulated distributions, a result of the skewed

haplotypic frequency distribution in the empirical data.

Genetic analyses

In the empirical data, nine of the 33 loci were found to be

out of Hardy-Weinberg equilibrium (HWE) with a combined

p-value using Fisher’s method of 2.3×10–6. In the simulation,

the median number of loci out of HWE was two, with a

maximum of five (Fig. 7a). When errors were added to the

simulated data, the median number out of HWE increased to

three with a maximum of 11 (Fig. 7b). The p-value for the

test with errors was 0.006.

There was a relatively uniform distribution of MCMC

HWE p-values across loci without errors included (Fig. 8a).

The combined p-value using Fisher’s method for the

empirical data was 2.3×10–6, which was less than the

minimum value in the simulation of 0.0025. The 95-

percentile of the simulated distribution was 0.022–0.989.

When errors were introduced into the simulated data, the

distributions of the MCMC HWE p-values and the Fisher’s

method p-values were highly skewed (Fig. 8b). The median

of Fisher’s method p-values was 2.5×10–2, with a 95-

percentile of 3.14×10–5–5.1×10–1. Sixty one percent of this

distribution was ≤0.05. The empirical value was at the lower

1% of this distribution, making it inconsistent with the

simulation.

In the analyses of the empirical data stratified by age

cohorts, sampling sites, and seasons within sampling sites,

only four of the 60 tests (30 pairwise tests each for panmixia

and simulation null models) indicated significant genetic

differentiation (p ≤ 0.05) (Table 3). χ2-tests of cohorts born

before 1950 versus those born after 1979 for both mtDNA

and microsatellites were significant using the permutation

test for panmixia (p = 0.012 and 0.048 respectively) but not

significant using the simulation generated p-value (p = 0.186

and 0.494 respectively). The likelihood for the simulation

null model was 12.5 times more likely than panmixia for

mtDNA and 3.4 times more likely for microsatellite data.

The mtDNA χ2-test between the 1950–79 and after-1979

cohorts, which had a small, but non-significant panmixia 

p-value (0.088) was also non-significant (0.312) under the

better supported simulation null model. Conversely, the same

test for microsatellites and the χ2-tests between cohorts 

born before 1950 and those born 1950–79 supported the

panmixia model. For both markers, Fst-tests supported the

simulation model, while the three Φst-tests supported the

panmixia model.

The other two tests that indicated significant

differentiation were inconsistent with our simulation model.

They were the mtDNA Fst-test between autumn and spring

samples from St. Lawrence Island (p = 0.008), and the

microsatellite Fst-test between Barrow and St. Lawrence

Island (p = 0.042). In both of these comparisons, although
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Fig. 4. Median population abundance for 500 simulation replicates from
1848 to 2006 shown in black. Dashed lines bound the 90-percentile of
abundance in each year. Grey lines and points indicate trajectory and
median abundance estimates from surveys with 90% CIs reproduced from
Brandon and Wade (2006).

Fig. 5. Distribution of age within each demographic stage for all simulated
individuals at the end of burn-in (a), and the end of whaling (b), for an
example simulation replicate. 



the p-value for panmixia was non-significant, the panmixia

model was less than 1.4 times more likely than the

simulation model. Additionally, the panmixia p-values for

both microsatellite tests of the sampling sites were only

slightly higher than the critical α (p = 0.066 for both).

The introduction of errors into the simulated microsatellite

data did not make a substantial change in the results of any

of the Fst or χ2-tests. While the p-value of some results

changed slightly, there was not a consistent pattern in the

direction of the change (results not shown).

DISCUSSION

Results indicate the benefit of using simulation models to

develop null distributions when assumptions of Wright-

Fisher null distributions are known to have been violated.

The two significant permutation tests for panmixia (χ2 for

two extreme age cohorts) were not significant using the null

distributions from the simulations and were also the tests

which most strongly supported the simulation null model

(i.e. had the largest negative log-likelihood ratio values). In

many respects, the results of the analysis indicate that the

empirical genetic data sampled from BCB bowhead whales

are more consistent with the model of a single, randomly-

mating population with a history of whaling and subsequent

recovery mimicking the true bowhead whale history than

they are with standard null distributions generated under

assumptions of panmixia. None of the 15 pairwise cohort

tests conducted (three comparisons for five measures of

genetic differentiation) exhibited a significant difference

between the simulated replicates and empirical data.

However, the number of loci actually out of HWE

significantly exceeded the numbers estimated to be out of

HWE in the simulations, which suggests that, in some

respect, our model may not fully capture some component

of the process that generated these samples. Given the

findings of Morin et al. (2009), an attempt was made to

simulate some of the genotyping errors that may lead to

Hardy-Weinberg disequilibrium. However, when errors were

introduced in the simulated data, the difference between the

two decreased dramatically but remained significant. This

was the only analysis for which the introduction of

genotyping errors into the simulated datasets had a
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Fig. 6. Distribution of single-locus measures of genetic diversity in the empirical data (histograms over the 33 loci), and 500 replicates of the simulation (bold
lines). For mtDNA, the empirical data value is given by a single line. 



substantial impact on the results. While the comparison

between the empirical and simulated results was still

significant even with errors introduced, the results support

those of Morin et al. (2009) in highlighting the sensitivity of

HWE to genotyping errors. For instance, in the simulation

without genotyping errors only 0.026 of the simulated

datasets had five or more loci out of HWE. When genotyping

errors were introduced, this frequency jumped to 0.298.

The introduction of errors showed a greater effect on the

distribution of the overall Fisher’s method p-value for HWE.

Without errors, this distribution was relatively uniform as

would be expected under a standard null hypothesis. When

errors were included, the distribution became highly skewed

towards very small p-values. While this skew was not large

enough to make the empirical finding of overall Hardy-

Weinberg disequilibrium consistent with our model, the

implication is that with even the relatively low error rate

identified by Morin et al. (2009), there is a large probability

(61% of the replicates had a p ≤0.05) of falsely assessing

widespread disequilibrium. 

A very simplistic model was used for introducing

genotyping errors to the simulated datasets. Though the

estimated allelic dropout rate from the empirical data was

incorporated, all errors were random with respect to the loci

at which they occurred and the alleles and individuals that

were affected. In reality, genotyping errors are often not

random (Bonin et al., 2004; Gagneux et al., 1997; Morin et
al., 2009). Some loci or samples may be more susceptible to

errors than others. Allele length and frequency may also

affect the likelihood of the allele being correctly scored.

Stutter bands and slippage would result in the mis-scored

allele being very close in length to the correct allele, rather

than reflecting the overall allele frequency at the locus. Since

it was not possible to quantify the various biases inherent in

genotyping errors, a simplistic model was chosen that only

included allelic dropout and random errors. If other realistic

biases had been incorporated into the simulated genotyping

errors, an even stronger impact on the expected distribution

of the number of loci out of HWE (Morin et al., 2009) would

have been expected. The susceptibility of HWE to

genotyping errors makes reliance on this metric as the sole

source of data indicating population structure questionable

practice.

The second analysis that indicated a lack of consistency

between the empirical data and simulation model was the Fst

test of mtDNA sequences from samples taken at St.

Lawrence Island in the autumn and spring. The magnitude

of the observed mtDNA Fst value (0.054) in this test results

from the difference in the frequency of one haplotype

(BH42) between spring and autumn samples (6 in autumn,

1 in spring). Given that five of the six autumn samples that

possessed haplotype BH42 came from one location in St.

Lawrence Island (Savoonga), and sample sizes are relatively

small in both strata, it is possible that these samples do not

adequately represent the haplotypic distributions of St.

Lawrence Island whales in these seasons. 

The final analysis that was inconsistent with the model

described here was the Fst test between Barrow and St.

Lawrence Island for the microsatellite markers. It is possible

that this result is being influenced either by the unusual

distribution of the autumn Savoonga samples mentioned

above or by the loci that were found to be out of HWE in the

Barrow samples. The effect of the latter were partially

examined by running this analysis again after removing the

six samples most influential on HWE, which were identified

by Morin et al. (2009). The removal of these samples did not

significantly change the lack of consistency between the

empirical and simulated data either with or without errors

introduced into the simulated data.

By mimicking the demographic composition and whaling

history of BCB bowhead whales, the model was able to

capture non-equilibrial effects such as GGS that a standard

panmixia null model could not. This was most clearly shown

in the extreme example of the age cohort analyses. However,

it was also evident in analyses which compared whales

sampled in Barrow versus those sampled from St. Lawrence

Island. Although the microsatellite Fst test indicated

significant differentiation using the simulated null
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Fig. 7. Distribution of the number of loci out of Hardy-Weinberg equilibrium
in the 500 replicates without (a) and with (b) errors included. Numbers
above the bars are the fraction of the total number of replicates
represented by that bar.



distribution, the likelihood ratio suggests that the panmixia

model is only very slightly favoured. Given that there is a

significant difference in ages (as inferred from length – Fig.

3) between these two sites, it is expected that this

stratification would behave more like the cohort analyses.

Additionally, the St. Lawrence Island microsatellite sample

size was small (n = 25) relative to mtDNA (n = 52), so

conclusions must be treated as preliminary. Genotyping of

more samples from this region with Single Nucleotide

Polymorphisms (SNPs) is underway which ought to provide

more resolution. 

The fact that both microsatellite panmixia test results are

only slightly greater than the critical α could lead one to

incorrectly infer the presence of population structure were

there is none. Thus, the results presented here suggest that

in some cases where standard permutation tests for panmixia

may indicate significant genetic differentiation, if the

population demographic history is taken into account, the

simulated distribution will more appropriately reflect the

genetic distribution of the null model being tested.

Simulation construction

The simulation described in this paper represents a null

hypothesis based on a very specific model of a single

population that is out of genetic equilibrium due to its

population history. One of the strengths of this simulation is

that by matching the age and sex characteristics of the

empirical samples where possible, this null hypothesis

inherently incorporates any potential demographic biases in

the sampling process. The model relies on several parameters

controlling the population dynamics and genetic diversity.

When possible, empirical data and parameter values from

independent sources were used. When these were not

available, parameters were iteratively tuned to ensure that

other aspects of simulation either fit published results or

matched the empirical data as closely as possible. It is

important to note that this process does not ensure that the

parameter values are accurate with respect to a ‘true’ single

population; the current best statistical estimates of stock

structure and biological/demographic parameters are of

varying precision.

An example is the procedure by which carrying capacity

(K) was selected. With the value of the logistic growth shape

parameter (z) set at the median posterior value from Brandon

and Wade’s (2006) backward projection model, a value of K
was selected such that the majority of the replicates did not

go extinct and passed through the abundance ‘gates’. Under

these constraints it can be seen that many of the population

dynamics parameters, most notably K, z, and the population

growth rate (r – not specified in the model, but resulting from
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Fig. 8. Distribution of p-values for Hardy-Weinberg equilibrium (HWE) without (a) and with (b) errors included. Figures on
left are distributions of locus p-values from Genepop (truncated to values ≤ 0.1). Figures on right are distributions of overall
p-value using Fisher’s method. 



the reproduction and survival matrices), will be closely

correlated such that multiple combinations would work.

While the goal was not to estimate these parameters, through

iterative testing it was determined that, given the historical

catch record, there was a small range over which they could

vary and still meet the extinction and abundance constraints.

In the tests, choices of K outside of the range of

approximately 11,900–12,400 would not produce useable

replicates. This range is well within the 95% credibility

interval for K (9,112–13,610) from the Brandon and Wade

(2006) assessment model most similar to the simulation used

in this study, which is expected given that this study used the

same historical catch and abundance data. 

In this simulation, the carrying capacity of the population

was assumed to be the same now as it was prior to the onset

of commercial whaling. This could have been violated if

there has been a substantial change in the ecosystem or the

range of the population has either expanded or contracted.

The 2001 abundance estimate of 10,545 suggests that the

population is very close to the carrying capacity estimated

in Brandon and Wade (2006), making it unlikely that there

has been a decrease in carrying capacity. Moreover, estimates

from George et al. (2004) indicate that the bowhead whale

population continues to increase more than 3% annually.

Among a variety of possible explanations for this finding

would be an increase in carrying capacity. Whether or not

there has indeed been a significant increase in carrying

capacity will require future surveys.

Similarly, had bowhead whales been subjected to

substantial population fluctuations prior to commercial

whaling, some of the parameters used in the 4,000 year burn-

in may not reflect reality as that phase simulated a population

at demographic and genetic equilibrium. However, because

the burn-in was tuned to produce a population with the

approximate amount of diversity as seen in the current

empirical data, deviations would not be expected to

substantially affect the results. The difference between the

actual effective population size (Ne) and what was calculated

to initialise the population at equilibrium would be offset by

a difference in the actual mutation rate and the one used in

the study.

Another result of the model constraints is that it was not

possible to directly control population abundance at the nadir

or the range over which it varied. As a population reduced

to a very small size will be unable to contain the entire

genetic diversity of its larger progenitor, this factor is likely

to greatly affect the degree of genetic disequilibrium within

the population. The smaller the nadir, the stronger the signal

of a GGS is expected to be, in which the genotypes of

individuals born before and after the nadir will appear to

have come from two different distributions. Therefore, it is

important to note that the results of this study are conditional
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Table 3

Comparison of panmixia and simulation null models for tests of genetic differentiation of several stratifications of the data. Sample size of each strata given
in parentheses. Panmixia and simulation p-values are from 500 replicates of each test. Likelihoods estimated from gamma distributions fit to replicates from
each null model. Log-likelihood ratio is log(Panmixia likelihood/Simulation likelihood). Log-likelihood ratios less than 1 support the simulation model, while
those greater than 1 support the panmixia model. Pairwise comparisons within each marker type are sorted by increasing Log-likelihood ratio. Values in grey
indicate p-values ≤ 0.05. SLI=St. Lawrence Island.

Observed Panmixia Simulation Panmixia Simulation Log-likelihood
Stratification Strata Test value p-value p-value likelihood likelihood ratio

(a) mtDNA

Age cohorts Before 1950 (21) v. after 1979 (34) χ2 35.582 0.012 0.186 0.004 0.048 0.08
1950-1979 (25) v. after 1979 (34) χ 2 34.331 0.088 0.312 0.039 0.058 0.67
Before 1950 (21) v. after 1979 (34) Fst 0.009 0.190 0.186 16.031 20.528 0.78
1950-1979 (25) v. after 1979 (34) Fst 0.007 0.261 0.216 20.523 25.555 0.80
Before 1950 (21) v. 1950-79 (25) Fst -0.007 0.631 0.728 29.291 35.237 0.83
Before 1950 (21) v. after 1979 (34) Φst 0.012 0.230 0.242 11.580 9.223 1.26
1950-1979 (25) v. after 1979 (34) Φst -0.015 0.778 0.658 27.910 20.842 1.34
Before 1950 (21) v. 1950-79 (25) Φst 0.005 0.321 0.284 14.524 10.299 1.41
Before 1950 (21) v. 1950-79 (25) χ 2 22.758 0.842 0.844 0.083 0.054 1.54

Sampling sites Barrow (258) v. SLI (52) Fst -0.002 0.655 0.772 119.446 125.890 0.95
Barrow (258) v. SLI (52) χ 2 52.939 0.780 0.802 0.030 0.025 1.20
Barrow (258) v. SLI (52) Φst -0.002 0.575 0.482 75.804 56.751 1.34

Barrow seasons Autumn (133) v. Spring (125) Fst 0.000 0.355 0.406 142.269 179.073 0.79
Autumn (133) v. Spring (125) Φst 0.002 0.218 0.232 57.302 48.569 1.18
Autumn (133) v. Spring (125) χ 2 57.078 0.573 0.586 0.053 0.040 1.33

SLI seasons Autumn (13) v. Spring (11) χ 2 16.519 0.172 0.672 0.126 0.131 0.96
Autumn (13) v. Spring (11) Φst -0.014 0.485 0.492 8.479 6.949 1.22
Autumn (13) v. Spring (11) Fst 0.054 0.080 0.008 2.318 1.673 1.39

(b) Microsatellites

Age cohorts Before 1950 (14) v. after 1979 (24) χ 2 355.637 0.048 0.494 0.004 0.014 0.29
Before 1950 (14) v. 1950-79 (16) Fst -0.004 0.804 0.844 76.232 97.654 0.78
Before 1950 (14) v. after 1979 (24) Fst 0.002 0.335 0.272 71.310 88.219 0.81
1950-1979 (16) v. after 1979 (24) Fst -0.003 0.790 0.858 107.732 118.951 0.91
1950-1979 (16) v. after 1979 (24) χ 2 324.783 0.281 0.888 0.015 0.007 2.14
Before 1950 (14) v. 1950-79 (16) χ 2 269.402 0.774 0.998 0.015 0.001 15.00

Sampling sites Barrow (213) v. SLI (25) χ 2 464.636 0.066 0.126 0.003 0.005 0.60
Barrow (213) v. SLI (25) Fst 0.002 0.066 0.042 89.679 72.476 1.24

Barrow seasons Autumn (115) v. Spring (98) χ 2 425.940 0.206 0.374 0.010 0.011 0.91
Autumn (115) v. Spring (98) Fst 0.001 0.128 0.098 301.650 293.580 1.03

SLI seasons Autumn (14) v. Spring (11) Fst -0.007 0.934 0.988 43.487 17.524 2.48
Autumn (14) v. Spring (11) χ 2 254.095 0.978 1.000 0.003 1.22 · 10-4 24.59 



on the nadir being approximately 1,100. This is consistent

with the suggestions that the population size might have been

1,000 or lower at the end of commercial whaling (Bockstoce

and Botkin, 1983; Bockstoce and Burns, 1993).

In the absence of GGS, sampling from an age-structured

population as well as non-random sampling can also lead to

inferences of populations that are out of genetic equilibrium

(Waples, 1998; Waples and Yokota, 2007). Though there is

no evidence that whalers were intentionally selective in their

hunting, the fact that bowhead whales segregate by age and

sex during migration may have resulted in selectivity on the

basis of availability (Bockstoce, 1986). Evidence for some

selectivity can be found in the fact that the average size of

whales killed decreased between the beginning of the fishery

and 1874, the only period for which such data are available

(Bockstoce and Burns, 1993). If a similar kind of selectivity

continued throughout the commercial hunt, it would add to

effects of GGS as the portion of the population that survived

through the nadir would tend to represent younger cohorts.

As a result of the complexity of this simulation and the

constraints to mirror bowhead whale population trajectories

as discussed above, the sensitivity of the results to

parameters such as selectivity of harvest, differences in the

age-structure of the population, or variance in reproductive

success were not examined. These items are being further

explored with a simpler form of the simulation previously

described by Ripley et al. (2006) and presented in Martien

et al. (2009).

In theory, the methods described here could be extended

to construct any number of alternative null hypotheses. For

example, while this simulation models a single stock, a

variety of two-stock hypotheses have been proposed for

BCB bowhead whales (IWC, 2008) and it would be a

productive exercise to use the methods presented here to

explore their relative likelihoods. Genetic simulations for any

of these two-stock hypotheses would require several

important refinements such as defining the population

dynamics of each stock, as well as the annual partitioning of

the historical catch among stocks. The stocks would also

have to be initialised at their appropriate pre-whaling genetic

conditions, which are a result of the relative abundances and

degree of gene-flow. Finally, during the ‘whaling’ phase of

the simulation, empirical samples and their simulated

equivalents would need to be assigned to stock, introducing

further uncertainty.

In summary, the creation of more appropriate null

distributions for common tests for population structure is a

potentially important strategy when there are known reasons

for the population to be in disequilibrium due to historical

or demographic factors. In such cases, the simulated null

distributions may provide a better basis for inference than

reliance on the standard Wright-Fisher assumption of

equilibrium.
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