
INTRODUCTION
The bowhead whale, Balaena mysticetus, was once the
target of commercial whaling (for oil and baleen) and was
severely depleted by commercial whalers up to the
beginning of the 20th century (Bockstoce and Burns, 1993);
the Bering-Chukchi-Beaufort Seas stock1 (sometimes
referred to as the westernArctic stock) was primarily hunted
between 1848 and 1914, after which such activity declined
due to the reduction in availability of whales and the advent
of petroleum goods (Bockstoce and Botkin, 1983). This
species is listed as endangered under the US Endangered
Species Act and is protected from commercial whaling by
the International Whaling Commission (IWC). Limited
whaling for subsistence is allowed by the IWC for native
groups in Northern Alaska (USA) and the west coast of
Chukotka (Russian Federation) with catch limits being set
within sustainable levels determined by the IWC Scientific
Committee using the simulation-tested ‘Bowhead Strike
Limit Algorithm’ (IWC, 2003, pp. 18-23).
Abundance and trend information for the Bering-Chukchi-

Beaufort seas stock has been obtained from ice-based
censuses carried out during the spring migration past Point
Barrow,Alaska (Raftery et al., 1995; Raftery and Zeh, 1998).
George et al. (2004) used a method that consisted of
computing abundance estimates from estimates (N4) of the
number of whales that passed within the 4km visual range of
the observation ‘perch’ from which the whales are counted,
the estimated proportions P4 of the whales that passed within
this range and the estimated standard errors (SE) of N4 and
P4. Their 2001 abundance estimate was 10,470 (SE=1,351)
with 95% confidence interval of 8,100-13,500. Zeh and Punt
(2005) estimated that the annual rate of increase (ROI) of the
Western Arctic bowhead whale population from 1978 to
2001 was 3.4% (95% CI 1.7%-5%) indicating a population
in steady recovery even with the subsistence harvest.

An independent method of estimating inter alia
abundance and trend information is the use of mark-
recapture data (Hammond et al., 1990). The bowhead whale
is totally black, except for white pigmentation on the chin
and tail in some animals. Some individuals have natural
markings that make their re-identification possible through
comparison of photographs taken at different times. Others,
besides their natural markings, may have acquired marks
(scars) as a result of wounds, attack, etc.
A study by da Silva et al. (2000) examined aerial

photographs of the bowhead whale suitable for
identification of individuals using their natural markings
that have been collected in Bering, Chukchi and Beaufort
Seas since 1976. Most of the photographs have been
collected by LGL Ltd. (LGL), the National Marine Mammal
Laboratory (NMML) and the Cascadia Research Collective
(CRC). The photos are housed at LGL and NMML.
Capture-recapture methods based on photo-identification

data (hereafter photo-ID data) are widely used for estimating
abundance of marine mammals and other species. Instead of
artificially tagging the captured individuals, the natural and
acquired marks of the photographed ones are used to build
the matrix of their capture histories that is used in most
capture-recapture estimation processes.
Animals whose extent of marks does not allow re-

identification are called unmarked. Those individuals are
uncatchable in the sense that they cannot be recognised.
This violates a basic assumption of most capture-recapture
models which requires that every animal in the population
be uniquely identifiable.
In choosing the modelling most adequate for the data in

this study, a choice between closed or open capture-
recapture models had to be made (e.g. Hammond, 1986).
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The first option requires that the time span that is considered
in the analysis is small enough to prevent the occurrence of
substantial demographic changes in the population. In this
study closed population models are used.
Recent studies that have used mark-recapture data to

estimate bowhead whale abundance (da Silva et al., 2000;
Koski et al., 2008) have obtained results that are in
accordance with those from the census data referred to
above.
Solving the problem of estimating animal abundance in

the presence of unmarked individuals was first attempted by
Seber (1982, p.72). Working with bottlenose dolphin photo-
ID data, Williams et al. (1993) used Seber’s approach for
obtaining an abundance estimate of that population. Da
Silva (1999) and da Silva et al. (2000) developed frequentist
models allowing for heterogeneity in capture probabilities.
The inferences were dealt with using parametric bootstrap
methods. The methodology was applied to real and
simulated bowhead whale photo-ID data. Their results were
in good agreement with those obtained by Raftery and Zeh
(1998) and Raftery et al. (1995), who used bowhead whale
ice-based census data. Schweder (2003) developed
alternative methodology to that of da Silva (1999) and da
Silva et al. (2000). He applied his methods to the same
bowhead whale photo-ID data used by those authors and
obtained bowhead whale population inferences largely in
agreement with those obtained by them.
Bayesian estimation of population sizes (N) of

demographically closed populations often depend upon the
estimation of nuisance parameters such as capture
probabilities at different occasions. Vague beta priors are
usually assigned to those nuisance parameters in order to
describe their posterior distributions. Using bowhead whale
simulated data, da-Silva et al. (2003) observed that some
choices of vague beta priors may cause substantial biases in
the estimated values of N. For a variety of problems the
pitfall of using vague priors is, according to Bernardo and
Smith (1995, p.298) that ‘every prior specification has some
informative posterior or predictive implications’. One
approach to deal with this problem is to estimate the
hyperparameters of the prior beta distributions using an
Empirical Bayes analysis.
Huggins (2002) proposed an Empirical Bayes analysis for

estimating animal abundance for the case of heterogeneous
capture probabilities. In this paper, an Empirical Bayes
analysis for estimating the size of an animal population
including unmarked individuals with capture probabilities
varying according to the sampling occasions is presented. A
Gibbs sampling algorithm was considered in order to obtain
Monte Carlo estimates for the posterior distribution of N
using both vague and Empirical Bayes defined priors for the
nuisance parameters.

NOTATION
The photo-ID data available for capture-recapture
estimation of animal abundance consists of the capture
histories of the naturally marked individuals and some
summary statistics related to the photos of an individual
taken over the sampling occasions. In order to avoid biases
caused by re-identification errors, only good quality photos
were used in the analysis. All good quality photos of the
photographed individuals were used. However, only
individuals who possessed an acceptable extent of natural
marks comprise what is termed the population of the

‘marked individuals’. A capture means that a good quality
photograph of a whale was taken and, if a whale presented a
non negligible extent of natural marks, it was considered
marked. The notation below was used throughout.

Nu : the total number of unmarked whales in the population.

Nm : the total number of marked whales in the population.

N = Nm + Nu : the total number of whales.

X m
j : the number of good photos of marked whales at

occasion j, j = 1, . . . , t, where good photos are those for
which the identification of the whales is possible.

X u
j : the number of good photos of unmarked whales at

occasion j.
The total number of good photos at occasion j: Xj = X m

j + X u
j .

nj : the total number of marked whales captured at time j.
r : the number of different marked whales captured over the
experiment.

ω : any subset of {1, . . . , t}.

uω : the number of marked whales with history ω.

p = ( p1,..., pt ) where pj is the capture probability at time j.

A LIKELIHOOD BASED ON GOOD
PHOTOGRAPHS
In da-Silva et al. (2003), the relationship between Nm and
Nu due to N = Nm + Nu was expressed in terms of

(1)

which represents the log of the unknown fraction of the
population sizes of unmarked to marked individuals in the
population. Therefore the estimated size of the whole
population was given by

The parameters Nm and ∆ were estimated using a Bayesian
procedure involving a conditional likelihood of θ = (∆, p,
Nm) given the total number of good photos at each of the
sampling occasions, {Xj}. The likelihood consists of a
combination of Darroch’s model (Darroch, 1958) and a
binomial model as follows,

L (∆ , p , Nm )
= Pr ( { uω } , { X m

j } | {Xj}, ∆ , p , Nm )
= Pr ( { uω } | { X m

j } , {Xj}, ∆ , p , Nm )
Pr ( { X m

j } | {Xj}, ∆ , p , Nm )
= Pr ( { uω } | p , Nm) Pr ( { X m

j } | {Xj}, ∆ )

(2)
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obtained bowhead whale population inferences largely in
agreement with those obtained by them.
Bayesian estimation of population sizes (N) of

demographically closed populations often depend upon the
estimation of nuisance parameters such as capture
probabilities at different occasions. Vague beta priors are
usually assigned to those nuisance parameters in order to
describe their posterior distributions. Using bowhead whale
simulated data, da-Silva et al. (2003) observed that some
choices of vague beta priors may cause substantial biases in
the estimated values of N. For a variety of problems the
pitfall of using vague priors is, according to Bernardo and
Smith (1995, p.298) that ‘every prior specification has some
informative posterior or predictive implications’. One
approach to deal with this problem is to estimate the
hyperparameters of the prior beta distributions using an
Empirical Bayes analysis.
Huggins (2002) proposed an Empirical Bayes analysis for

estimating animal abundance for the case of heterogeneous
capture probabilities. In this paper, an Empirical Bayes
analysis for estimating the size of an animal population
including unmarked individuals with capture probabilities
varying according to the sampling occasions is presented. A
Gibbs sampling algorithm was considered in order to obtain
Monte Carlo estimates for the posterior distribution of N
using both vague and Empirical Bayes defined priors for the
nuisance parameters.

NOTATION
The photo-ID data available for capture-recapture
estimation of animal abundance consists of the capture
histories of the naturally marked individuals and some
summary statistics related to the photos of an individual
taken over the sampling occasions. In order to avoid biases
caused by re-identification errors, only good quality photos
were used in the analysis. All good quality photos of the
photographed individuals were used. However, only
individuals who possessed an acceptable extent of natural
marks comprise what is termed the population of the

‘marked individuals’. A capture means that a good quality
photograph of a whale was taken and, if a whale presented a
non negligible extent of natural marks, it was considered
marked. The notation below was used throughout.

Nu : the total number of unmarked whales in the population.

Nm : the total number of marked whales in the population.

N = Nm + Nu : the total number of whales.

X m
j : the number of good photos of marked whales at

occasion j, j = 1, . . . , t, where good photos are those for
which the identification of the whales is possible.

X u
j : the number of good photos of unmarked whales at

occasion j.
The total number of good photos at occasion j: Xj = X m

j + X u
j .

nj : the total number of marked whales captured at time j.
r : the number of different marked whales captured over the
experiment.

ω : any subset of {1, . . . , t}.

uω : the number of marked whales with history ω.

p = ( p1,..., pt ) where pj is the capture probability at time j.

A LIKELIHOOD BASED ON GOOD
PHOTOGRAPHS
In da-Silva et al. (2003), the relationship between Nm and
Nu due to N = Nm + Nu was expressed in terms of

(1)

which represents the log of the unknown fraction of the
population sizes of unmarked to marked individuals in the
population. Therefore the estimated size of the whole
population was given by

The parameters Nm and ∆ were estimated using a Bayesian
procedure involving a conditional likelihood of θ = (∆, p,
Nm) given the total number of good photos at each of the
sampling occasions, {Xj}. The likelihood consists of a
combination of Darroch’s model (Darroch, 1958) and a
binomial model as follows,

L (∆ , p , Nm )
= Pr ( { uω } , { X m

j } | {Xj}, ∆ , p , Nm )
= Pr ( { uω } | { X m

j } , {Xj}, ∆ , p , Nm )
Pr ( { X m

j } | {Xj}, ∆ , p , Nm )
= Pr ( { uω } | p , Nm) Pr ( { X m

j } | {Xj}, ∆ )

(2)
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The first option requires that the time span that is considered
in the analysis is small enough to prevent the occurrence of
substantial demographic changes in the population. In this
study closed population models are used.
Recent studies that have used mark-recapture data to

estimate bowhead whale abundance (da Silva et al., 2000;
Koski et al., 2008) have obtained results that are in
accordance with those from the census data referred to
above.
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the presence of unmarked individuals was first attempted by
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models allowing for heterogeneity in capture probabilities.
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in good agreement with those obtained by Raftery and Zeh
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ice-based census data. Schweder (2003) developed
alternative methodology to that of da Silva (1999) and da
Silva et al. (2000). He applied his methods to the same
bowhead whale photo-ID data used by those authors and
obtained bowhead whale population inferences largely in
agreement with those obtained by them.
Bayesian estimation of population sizes (N) of

demographically closed populations often depend upon the
estimation of nuisance parameters such as capture
probabilities at different occasions. Vague beta priors are
usually assigned to those nuisance parameters in order to
describe their posterior distributions. Using bowhead whale
simulated data, da-Silva et al. (2003) observed that some
choices of vague beta priors may cause substantial biases in
the estimated values of N. For a variety of problems the
pitfall of using vague priors is, according to Bernardo and
Smith (1995, p.298) that ‘every prior specification has some
informative posterior or predictive implications’. One
approach to deal with this problem is to estimate the
hyperparameters of the prior beta distributions using an
Empirical Bayes analysis.
Huggins (2002) proposed an Empirical Bayes analysis for

estimating animal abundance for the case of heterogeneous
capture probabilities. In this paper, an Empirical Bayes
analysis for estimating the size of an animal population
including unmarked individuals with capture probabilities
varying according to the sampling occasions is presented. A
Gibbs sampling algorithm was considered in order to obtain
Monte Carlo estimates for the posterior distribution of N
using both vague and Empirical Bayes defined priors for the
nuisance parameters.

NOTATION
The photo-ID data available for capture-recapture
estimation of animal abundance consists of the capture
histories of the naturally marked individuals and some
summary statistics related to the photos of an individual
taken over the sampling occasions. In order to avoid biases
caused by re-identification errors, only good quality photos
were used in the analysis. All good quality photos of the
photographed individuals were used. However, only
individuals who possessed an acceptable extent of natural
marks comprise what is termed the population of the

‘marked individuals’. A capture means that a good quality
photograph of a whale was taken and, if a whale presented a
non negligible extent of natural marks, it was considered
marked. The notation below was used throughout.

Nu : the total number of unmarked whales in the population.

Nm : the total number of marked whales in the population.

N = Nm + Nu : the total number of whales.

X m
j : the number of good photos of marked whales at

occasion j, j = 1, . . . , t, where good photos are those for
which the identification of the whales is possible.

X u
j : the number of good photos of unmarked whales at

occasion j.
The total number of good photos at occasion j: Xj = X m

j + X u
j .

nj : the total number of marked whales captured at time j.
r : the number of different marked whales captured over the
experiment.

ω : any subset of {1, . . . , t}.

uω : the number of marked whales with history ω.

p = ( p1,..., pt ) where pj is the capture probability at time j.

A LIKELIHOOD BASED ON GOOD
PHOTOGRAPHS
In da-Silva et al. (2003), the relationship between Nm and
Nu due to N = Nm + Nu was expressed in terms of

(1)

which represents the log of the unknown fraction of the
population sizes of unmarked to marked individuals in the
population. Therefore the estimated size of the whole
population was given by

The parameters Nm and ∆ were estimated using a Bayesian
procedure involving a conditional likelihood of θ = (∆, p,
Nm) given the total number of good photos at each of the
sampling occasions, {Xj}. The likelihood consists of a
combination of Darroch’s model (Darroch, 1958) and a
binomial model as follows,

L (∆ , p , Nm )
= Pr ( { uω } , { X m

j } | {Xj}, ∆ , p , Nm )
= Pr ( { uω } | { X m

j } , {Xj}, ∆ , p , Nm )
Pr ( { X m

j } | {Xj}, ∆ , p , Nm )
= Pr ( { uω } | p , Nm) Pr ( { X m

j } | {Xj}, ∆ )

(2)
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Notice that Pr ( { uω } | p , Nm ) accounts for the marked
part of the population and is related to Darroch’s model,
which is completely described in terms of the set of random
variables {uω} (along with the appropriate parameters p and
Nm, only). Thus, the knowledge about {X j} and {Xm

j} is
irrelevant, justifying them to be dropped. In the expression
Pr ( {Xm

j} | {X j}, ∆), a binomial distribution can be seen,
which incorporates, through the number of good photos of
unmarked individuals, the information about the unmarked
part of the population. The absence of parameters p and Nm

shows that they are clearly not important in describing such
a part of the model. Using vague beta priors for the capture
probabilities and the adaptive rejection sampling method
(ARS) by Gilks and Wild (1992) for drawing values from
the full conditional posterior distribution of ∆, da-Silva et al.
(2003) estimated N for real and simulated bowhead whale
data. In that work, the full conditional posterior distributions
of N and {pj} were standard, and could be sampled without
any difficulty. An alternative way (the Gibbs sampling
algorithm) to obtain Monte Carlo estimates of the posterior
distribution of N is presented below.

GIBBS SAMPLING FOR ESTIMATING N
In this section, alternative methods to the ones proposed by
da-Silva et al. (2003) are described for drawing samples
from the joint posterior distribution of θ = ( Nm,{ pj }, ∆).
The Gibbs sampling is essentially a special case of the
Metropolis-Hastings algorithm (Hastings, 1970; Metropolis
et al., 1953); which generates a Markov chain by sampling
from full conditional distributions. Each iteration cycle of
the Gibbs sampler gives an updated vector of the estimated
values of θ. Each coordinate of is sampled conditionally to
the values of the other components. For a very large number
of Gibbs sampling cycles, the sampled values of θ are from
the joint posterior distribution. The joint posterior is our
target distribution.
Let θ = (θ1,...,θk) be a k dimensional vector of unknowns,

D a vector of observed data and P ( θ | D ) be the
corresponding joint posterior distribution. Let P ( θj |D, θ-j )
be the full conditional distribution of θj, and θ-j denote the
vector θ with θj removed. The following scheme illustrates
the Gibbs sampling method for generating samples from
P ( θ | D ),
(1) Choose starting values θ1

(0)
,...,θk

(0);
(2) Sample θ1

(j+1) from p (θ1 | θ2(j),...,θk(j), D);
(3) Sample θ2

(j+1) from p (θ2 | θ1(j+1), θ3(j) ... , θk(j), D);
. . .
(4) Sample θk

(j+1) from p (θk | θ1(j+1), θ2(j+1) ... , θk-1(j+1), D);
(5) Repeat step 2 thousands of times.
An extensive discussion of the Gibbs sampler can be found
in Gelman et al. (1995).
Returning to the whale problem, since N is expressed as a

function of ∆ and Nm, its full conditional posterior
distribution is estimated through the estimated values of
those quantities. Expression (2) can be rewritten in terms of

.

Such reparameterisation allows an easy to sample full
conditional posterior distribution to de described for ϕ. Since

,

for each updated value of ϕ the corresponding updated
value of can ∆ be obtained.

The following prior distributions are considered:
pj ~ beta(a,b), j=1,…,t;
φ ~ beta(c,d);
π(Nm) ∝ 1/ Nm, i.e. the Jeffreys’ prior (see Gelman et al.,
1995).

The values a, b, c and d are hyperparameters are discussed
later.
Considering prior independence among the parameters, the
joint prior distribution is described by
π(θ) = π(Nm

, p, ϕ) = π(Nm)π(p)π(ϕ).
Thus, the corresponding joint posterior distribution of
θ = (Nm

, p, ϕ) is
π (ϕ, p, Nm

| {uω } , {X
m
j } , {X j}) ∝ L ( ϕ, p, Nm)

π(ϕ)π(p)π(Nm
) (3)

The Gibbs procedure for generating samples from the joint
posterior distribution of
θ = (Nm

, {pj}, φ)
consists of drawing the θ values through the following
sequence of draws:

(4)

(5)

(6)

Expressions (4) to (6) represent the full posterior
distributions of φ, Nm and pj , respectively. The distributions
in (4) and (6) are easily obtained. Expression (5) is obtained
when, in expression (3), we consider only the terms
involving Nm:
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Notice that Pr ( { uω } | p , Nm ) accounts for the marked
part of the population and is related to Darroch’s model,
which is completely described in terms of the set of random
variables {uω} (along with the appropriate parameters p and
Nm, only). Thus, the knowledge about {X j} and {Xm

j} is
irrelevant, justifying them to be dropped. In the expression
Pr ( {Xm

j} | {X j}, ∆), a binomial distribution can be seen,
which incorporates, through the number of good photos of
unmarked individuals, the information about the unmarked
part of the population. The absence of parameters p and Nm

shows that they are clearly not important in describing such
a part of the model. Using vague beta priors for the capture
probabilities and the adaptive rejection sampling method
(ARS) by Gilks and Wild (1992) for drawing values from
the full conditional posterior distribution of ∆, da-Silva et al.
(2003) estimated N for real and simulated bowhead whale
data. In that work, the full conditional posterior distributions
of N and {pj} were standard, and could be sampled without
any difficulty. An alternative way (the Gibbs sampling
algorithm) to obtain Monte Carlo estimates of the posterior
distribution of N is presented below.

GIBBS SAMPLING FOR ESTIMATING N
In this section, alternative methods to the ones proposed by
da-Silva et al. (2003) are described for drawing samples
from the joint posterior distribution of θ = ( Nm,{ pj }, ∆).
The Gibbs sampling is essentially a special case of the
Metropolis-Hastings algorithm (Hastings, 1970; Metropolis
et al., 1953); which generates a Markov chain by sampling
from full conditional distributions. Each iteration cycle of
the Gibbs sampler gives an updated vector of the estimated
values of θ. Each coordinate of is sampled conditionally to
the values of the other components. For a very large number
of Gibbs sampling cycles, the sampled values of θ are from
the joint posterior distribution. The joint posterior is our
target distribution.
Let θ = (θ1,...,θk) be a k dimensional vector of unknowns,

D a vector of observed data and P ( θ | D ) be the
corresponding joint posterior distribution. Let P ( θj |D, θ-j )
be the full conditional distribution of θj, and θ-j denote the
vector θ with θj removed. The following scheme illustrates
the Gibbs sampling method for generating samples from
P ( θ | D ),
(1) Choose starting values θ1

(0)
,...,θk

(0);
(2) Sample θ1

(j+1) from p (θ1 | θ2(j),...,θk(j), D);
(3) Sample θ2

(j+1) from p (θ2 | θ1(j+1), θ3(j) ... , θk(j), D);
. . .
(4) Sample θk

(j+1) from p (θk | θ1(j+1), θ2(j+1) ... , θk-1(j+1), D);
(5) Repeat step 2 thousands of times.
An extensive discussion of the Gibbs sampler can be found
in Gelman et al. (1995).

Returning to the whale problem, since N is expressed as a
function of ∆ and Nm, its full conditional posterior
distribution is estimated through the estimated values of
those quantities. Expression (2) can be rewritten in terms of

.

Such reparameterisation allows an easy to sample full
conditional posterior distribution to de described for ϕ. Since

,

for each updated value of ϕ the corresponding updated
value of can ∆ be obtained.

The following prior distributions are considered:
pj ~ beta(a,b), j=1,…,t;
φ ~ beta(c,d);
π(Nm) ∝ 1/ Nm, i.e. the Jeffreys’ prior (see Gelman et al.,
1995).

The values a, b, c and d are hyperparameters are discussed
later.
Considering prior independence among the parameters, the
joint prior distribution is described by
π(θ) = π(Nm

, p, ϕ) = π(Nm)π(p)π(ϕ).
Thus, the corresponding joint posterior distribution of
θ = (Nm

, p, ϕ) is
π (ϕ, p, Nm

| {uω } , {X
m
j } , {X j}) ∝ L ( ϕ, p, Nm)

π(ϕ)π(p)π(Nm
) (3)

The Gibbs procedure for generating samples from the joint
posterior distribution of
θ = (Nm

, {pj}, φ)
consists of drawing the θ values through the following
sequence of draws:

(4)

(5)

(6)

Expressions (4) to (6) represent the full posterior
distributions of φ, Nm and pj , respectively. The distributions
in (4) and (6) are easily obtained. Expression (5) is obtained
when, in expression (3), we consider only the terms
involving Nm:
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Notice that Pr ( { uω } | p , Nm ) accounts for the marked
part of the population and is related to Darroch’s model,
which is completely described in terms of the set of random
variables {uω} (along with the appropriate parameters p and
Nm, only). Thus, the knowledge about {X j} and {Xm

j} is
irrelevant, justifying them to be dropped. In the expression
Pr ( {Xm

j} | {X j}, ∆), a binomial distribution can be seen,
which incorporates, through the number of good photos of
unmarked individuals, the information about the unmarked
part of the population. The absence of parameters p and Nm

shows that they are clearly not important in describing such
a part of the model. Using vague beta priors for the capture
probabilities and the adaptive rejection sampling method
(ARS) by Gilks and Wild (1992) for drawing values from
the full conditional posterior distribution of ∆, da-Silva et al.
(2003) estimated N for real and simulated bowhead whale
data. In that work, the full conditional posterior distributions
of N and {pj} were standard, and could be sampled without
any difficulty. An alternative way (the Gibbs sampling
algorithm) to obtain Monte Carlo estimates of the posterior
distribution of N is presented below.

GIBBS SAMPLING FOR ESTIMATING N
In this section, alternative methods to the ones proposed by
da-Silva et al. (2003) are described for drawing samples
from the joint posterior distribution of θ = ( Nm,{ pj }, ∆).
The Gibbs sampling is essentially a special case of the
Metropolis-Hastings algorithm (Hastings, 1970; Metropolis
et al., 1953); which generates a Markov chain by sampling
from full conditional distributions. Each iteration cycle of
the Gibbs sampler gives an updated vector of the estimated
values of θ. Each coordinate of is sampled conditionally to
the values of the other components. For a very large number
of Gibbs sampling cycles, the sampled values of θ are from
the joint posterior distribution. The joint posterior is our
target distribution.
Let θ = (θ1,...,θk) be a k dimensional vector of unknowns,

D a vector of observed data and P ( θ | D ) be the
corresponding joint posterior distribution. Let P ( θj |D, θ-j )
be the full conditional distribution of θj, and θ-j denote the
vector θ with θj removed. The following scheme illustrates
the Gibbs sampling method for generating samples from
P ( θ | D ),
(1) Choose starting values θ1

(0)
,...,θk

(0);
(2) Sample θ1

(j+1) from p (θ1 | θ2(j),...,θk(j), D);
(3) Sample θ2

(j+1) from p (θ2 | θ1(j+1), θ3(j) ... , θk(j), D);
. . .
(4) Sample θk

(j+1) from p (θk | θ1(j+1), θ2(j+1) ... , θk-1(j+1), D);
(5) Repeat step 2 thousands of times.
An extensive discussion of the Gibbs sampler can be found
in Gelman et al. (1995).
Returning to the whale problem, since N is expressed as a

function of ∆ and Nm, its full conditional posterior
distribution is estimated through the estimated values of
those quantities. Expression (2) can be rewritten in terms of

.

Such reparameterisation allows an easy to sample full
conditional posterior distribution to de described for ϕ. Since

,

for each updated value of ϕ the corresponding updated
value of can ∆ be obtained.

The following prior distributions are considered:
pj ~ beta(a,b), j=1,…,t;
φ ~ beta(c,d);
π(Nm) ∝ 1/ Nm, i.e. the Jeffreys’ prior (see Gelman et al.,
1995).

The values a, b, c and d are hyperparameters are discussed
later.
Considering prior independence among the parameters, the
joint prior distribution is described by
π(θ) = π(Nm

, p, ϕ) = π(Nm)π(p)π(ϕ).
Thus, the corresponding joint posterior distribution of
θ = (Nm

, p, ϕ) is
π (ϕ, p, Nm

| {uω } , {X
m
j } , {X j}) ∝ L ( ϕ, p, Nm)

π(ϕ)π(p)π(Nm
) (3)

The Gibbs procedure for generating samples from the joint
posterior distribution of
θ = (Nm

, {pj}, φ)
consists of drawing the θ values through the following
sequence of draws:

(4)

(5)

(6)

Expressions (4) to (6) represent the full posterior
distributions of φ, Nm and pj , respectively. The distributions
in (4) and (6) are easily obtained. Expression (5) is obtained
when, in expression (3), we consider only the terms
involving Nm:
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Notice that Pr ( { uω } | p , Nm ) accounts for the marked
part of the population and is related to Darroch’s model,
which is completely described in terms of the set of random
variables {uω} (along with the appropriate parameters p and
Nm, only). Thus, the knowledge about {X j} and {Xm

j} is
irrelevant, justifying them to be dropped. In the expression
Pr ( {Xm

j} | {X j}, ∆), a binomial distribution can be seen,
which incorporates, through the number of good photos of
unmarked individuals, the information about the unmarked
part of the population. The absence of parameters p and Nm

shows that they are clearly not important in describing such
a part of the model. Using vague beta priors for the capture
probabilities and the adaptive rejection sampling method
(ARS) by Gilks and Wild (1992) for drawing values from
the full conditional posterior distribution of ∆, da-Silva et al.
(2003) estimated N for real and simulated bowhead whale
data. In that work, the full conditional posterior distributions
of N and {pj} were standard, and could be sampled without
any difficulty. An alternative way (the Gibbs sampling
algorithm) to obtain Monte Carlo estimates of the posterior
distribution of N is presented below.

GIBBS SAMPLING FOR ESTIMATING N
In this section, alternative methods to the ones proposed by
da-Silva et al. (2003) are described for drawing samples
from the joint posterior distribution of θ = ( Nm,{ pj }, ∆).
The Gibbs sampling is essentially a special case of the
Metropolis-Hastings algorithm (Hastings, 1970; Metropolis
et al., 1953); which generates a Markov chain by sampling
from full conditional distributions. Each iteration cycle of
the Gibbs sampler gives an updated vector of the estimated
values of θ. Each coordinate of is sampled conditionally to
the values of the other components. For a very large number
of Gibbs sampling cycles, the sampled values of θ are from
the joint posterior distribution. The joint posterior is our
target distribution.
Let θ = (θ1,...,θk) be a k dimensional vector of unknowns,

D a vector of observed data and P ( θ | D ) be the
corresponding joint posterior distribution. Let P ( θj |D, θ-j )
be the full conditional distribution of θj, and θ-j denote the
vector θ with θj removed. The following scheme illustrates
the Gibbs sampling method for generating samples from
P ( θ | D ),
(1) Choose starting values θ1

(0)
,...,θk

(0);
(2) Sample θ1

(j+1) from p (θ1 | θ2(j),...,θk(j), D);
(3) Sample θ2

(j+1) from p (θ2 | θ1(j+1), θ3(j) ... , θk(j), D);
. . .
(4) Sample θk

(j+1) from p (θk | θ1(j+1), θ2(j+1) ... , θk-1(j+1), D);
(5) Repeat step 2 thousands of times.
An extensive discussion of the Gibbs sampler can be found
in Gelman et al. (1995).

Returning to the whale problem, since N is expressed as a
function of ∆ and Nm, its full conditional posterior
distribution is estimated through the estimated values of
those quantities. Expression (2) can be rewritten in terms of

.

Such reparameterisation allows an easy to sample full
conditional posterior distribution to de described for ϕ. Since

,

for each updated value of ϕ the corresponding updated
value of can ∆ be obtained.

The following prior distributions are considered:
pj ~ beta(a,b), j=1,…,t;
φ ~ beta(c,d);
π(Nm) ∝ 1/ Nm, i.e. the Jeffreys’ prior (see Gelman et al.,
1995).

The values a, b, c and d are hyperparameters are discussed
later.
Considering prior independence among the parameters, the
joint prior distribution is described by
π(θ) = π(Nm

, p, ϕ) = π(Nm)π(p)π(ϕ).
Thus, the corresponding joint posterior distribution of
θ = (Nm

, p, ϕ) is
π (ϕ, p, Nm

| {uω } , {X
m
j } , {X j}) ∝ L ( ϕ, p, Nm)

π(ϕ)π(p)π(Nm
) (3)

The Gibbs procedure for generating samples from the joint
posterior distribution of
θ = (Nm

, {pj}, φ)
consists of drawing the θ values through the following
sequence of draws:

(4)

(5)

(6)

Expressions (4) to (6) represent the full posterior
distributions of φ, Nm and pj , respectively. The distributions
in (4) and (6) are easily obtained. Expression (5) is obtained
when, in expression (3), we consider only the terms
involving Nm:
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for each updated value of ϕ the corresponding updated value 
of Δ can be obtained.

Notice that Pr ( { uw } | p , Nm ) accounts for the marked  
part of the population and is related to Darroch’s model, 
which is completely described in terms of the set of random 
variables {uw} (along with the appropriate parameters p and  
Nm, only). Thus, the knowledge about {X

j
} and {Xm

j
} is  

irrelevant, justifying them to be dropped. In the 
expression Pr ( {Xm

j
} | {X

j
}, D), a binomial distribution 

can be seen, which incorporates, through the number of 
good photos of unmarked individuals, the information 
about the unmarked part of the population. The absence 
of parameters p and Nm shows that they are clearly 
not important in describing such a part of the model. 
Using vague beta priors for the capture probabilities 
and the adaptive rejection sampling method (ARS) by 
Gilks and Wild (1992) for drawing values from the full 
conditional posterior distribution of D, da-Silva et al.  
(2003) estimated N for real and simulated bowhead 
whale data. In that work, the full conditional posterior 
distributions of N and {p

j
} were standard, and could 

be sampled without any difficulty. An alternative way 
(the Gibbs sampling algorithm) to obtain Monte Carlo 
estimates of the posterior distribution of N is presented 
below.

GIBBS SAMPLING FOR ESTIMATING N

In this section, alternative methods to the ones proposed 
by da-Silva et al. (2003) are described for drawing 
samples from the joint posterior distribution of θ =  
( Nm,{ p

j
 }, D).

The Gibbs sampling is essentially a special case of 
the Metropolis-Hastings algorithm (Hastings, 1970; 
Metropolis et al., 1953); which generates a Markov chain 
by sampling from full conditional distributions. Each 
iteration cycle of the Gibbs sampler gives an updated 
vector of the estimated values of θ. Each coordinate 
of  is sampled conditionally to the values of the other 
components. For a very large number of Gibbs sampling 
cycles, the sampled values of θ are from the joint 
posterior distribution. The joint posterior is our target 
distribution.

Let θ = (θ
1
,...,θ

k
) be a k dimensional vector of 

unknowns, D a vector of observed data and P ( θ | D ) 
be the corresponding joint posterior distribution. Let P  
(θ

j
 | D, θ

-j
 ) be the full conditional distribution of θ

j
, and 

θ
-j
 denote the vector θ with θ

j
 removed. The following 

scheme illustrates the Gibbs sampling method for 
generating samples from P ( θ | D ),

(1) Choose starting values θ
1

(0),...,θk(0);
(2) Sample θ

1
(j+1) from p (θ

1
 | θ

2
(j),...,θ

k
(j), D);

(3) Sample θ
2

(j+1) from p (θ
2
 | θ

1
(j+1), θ

3
(j) ... , θ

k
(j), D);

. . .
(4) Sample θ

k
(j+1) from p (θ

k
 | θ

1
(j+1), θ

2
(j+1) ... , θ

k-1
(j+1), D);

(5) Repeat step 2 thousands of times.

An extensive discussion of the Gibbs sampler can be 
found in Gelman et al. (1995).

Returning to the whale problem, since N is expressed 
as a function of D and Nm, its full conditional posterior 
distribution is estimated through the estimated values of 
those quantities. Expression (2) can be rewritten in terms of

Notice that Pr ( { uω } | p , Nm ) accounts for the marked
part of the population and is related to Darroch’s model,
which is completely described in terms of the set of random
variables {uω} (along with the appropriate parameters p and
Nm, only). Thus, the knowledge about {X j} and {Xm

j} is
irrelevant, justifying them to be dropped. In the expression
Pr ( {Xm

j} | {X j}, ∆), a binomial distribution can be seen,
which incorporates, through the number of good photos of
unmarked individuals, the information about the unmarked
part of the population. The absence of parameters p and Nm

shows that they are clearly not important in describing such
a part of the model. Using vague beta priors for the capture
probabilities and the adaptive rejection sampling method
(ARS) by Gilks and Wild (1992) for drawing values from
the full conditional posterior distribution of ∆, da-Silva et al.
(2003) estimated N for real and simulated bowhead whale
data. In that work, the full conditional posterior distributions
of N and {pj} were standard, and could be sampled without
any difficulty. An alternative way (the Gibbs sampling
algorithm) to obtain Monte Carlo estimates of the posterior
distribution of N is presented below.

GIBBS SAMPLING FOR ESTIMATING N
In this section, alternative methods to the ones proposed by
da-Silva et al. (2003) are described for drawing samples
from the joint posterior distribution of θ = ( Nm,{ pj }, ∆).
The Gibbs sampling is essentially a special case of the
Metropolis-Hastings algorithm (Hastings, 1970; Metropolis
et al., 1953); which generates a Markov chain by sampling
from full conditional distributions. Each iteration cycle of
the Gibbs sampler gives an updated vector of the estimated
values of θ. Each coordinate of is sampled conditionally to
the values of the other components. For a very large number
of Gibbs sampling cycles, the sampled values of θ are from
the joint posterior distribution. The joint posterior is our
target distribution.
Let θ = (θ1,...,θk) be a k dimensional vector of unknowns,

D a vector of observed data and P ( θ | D ) be the
corresponding joint posterior distribution. Let P ( θj |D, θ-j )
be the full conditional distribution of θj, and θ-j denote the
vector θ with θj removed. The following scheme illustrates
the Gibbs sampling method for generating samples from
P ( θ | D ),
(1) Choose starting values θ1

(0)
,...,θk

(0);
(2) Sample θ1

(j+1) from p (θ1 | θ2(j),...,θk(j), D);
(3) Sample θ2

(j+1) from p (θ2 | θ1(j+1), θ3(j) ... , θk(j), D);
. . .
(4) Sample θk

(j+1) from p (θk | θ1(j+1), θ2(j+1) ... , θk-1(j+1), D);
(5) Repeat step 2 thousands of times.
An extensive discussion of the Gibbs sampler can be found
in Gelman et al. (1995).
Returning to the whale problem, since N is expressed as a

function of ∆ and Nm, its full conditional posterior
distribution is estimated through the estimated values of
those quantities. Expression (2) can be rewritten in terms of

.

Such reparameterisation allows an easy to sample full
conditional posterior distribution to de described for ϕ. Since

,

for each updated value of ϕ the corresponding updated
value of can ∆ be obtained.

The following prior distributions are considered:
pj ~ beta(a,b), j=1,…,t;
φ ~ beta(c,d);
π(Nm) ∝ 1/ Nm, i.e. the Jeffreys’ prior (see Gelman et al.,
1995).

The values a, b, c and d are hyperparameters are discussed
later.
Considering prior independence among the parameters, the
joint prior distribution is described by
π(θ) = π(Nm

, p, ϕ) = π(Nm)π(p)π(ϕ).
Thus, the corresponding joint posterior distribution of
θ = (Nm

, p, ϕ) is
π (ϕ, p, Nm

| {uω } , {X
m
j } , {X j}) ∝ L ( ϕ, p, Nm)

π(ϕ)π(p)π(Nm
) (3)

The Gibbs procedure for generating samples from the joint
posterior distribution of
θ = (Nm

, {pj}, φ)
consists of drawing the θ values through the following
sequence of draws:

(4)

(5)

(6)

Expressions (4) to (6) represent the full posterior
distributions of φ, Nm and pj , respectively. The distributions
in (4) and (6) are easily obtained. Expression (5) is obtained
when, in expression (3), we consider only the terms
involving Nm:
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Notice that Pr ( { uω } | p , Nm ) accounts for the marked
part of the population and is related to Darroch’s model,
which is completely described in terms of the set of random
variables {uω} (along with the appropriate parameters p and
Nm, only). Thus, the knowledge about {X j} and {Xm

j} is
irrelevant, justifying them to be dropped. In the expression
Pr ( {Xm

j} | {X j}, ∆), a binomial distribution can be seen,
which incorporates, through the number of good photos of
unmarked individuals, the information about the unmarked
part of the population. The absence of parameters p and Nm

shows that they are clearly not important in describing such
a part of the model. Using vague beta priors for the capture
probabilities and the adaptive rejection sampling method
(ARS) by Gilks and Wild (1992) for drawing values from
the full conditional posterior distribution of ∆, da-Silva et al.
(2003) estimated N for real and simulated bowhead whale
data. In that work, the full conditional posterior distributions
of N and {pj} were standard, and could be sampled without
any difficulty. An alternative way (the Gibbs sampling
algorithm) to obtain Monte Carlo estimates of the posterior
distribution of N is presented below.

GIBBS SAMPLING FOR ESTIMATING N
In this section, alternative methods to the ones proposed by
da-Silva et al. (2003) are described for drawing samples
from the joint posterior distribution of θ = ( Nm,{ pj }, ∆).
The Gibbs sampling is essentially a special case of the
Metropolis-Hastings algorithm (Hastings, 1970; Metropolis
et al., 1953); which generates a Markov chain by sampling
from full conditional distributions. Each iteration cycle of
the Gibbs sampler gives an updated vector of the estimated
values of θ. Each coordinate of is sampled conditionally to
the values of the other components. For a very large number
of Gibbs sampling cycles, the sampled values of θ are from
the joint posterior distribution. The joint posterior is our
target distribution.
Let θ = (θ1,...,θk) be a k dimensional vector of unknowns,

D a vector of observed data and P ( θ | D ) be the
corresponding joint posterior distribution. Let P ( θj |D, θ-j )
be the full conditional distribution of θj, and θ-j denote the
vector θ with θj removed. The following scheme illustrates
the Gibbs sampling method for generating samples from
P ( θ | D ),
(1) Choose starting values θ1

(0)
,...,θk

(0);
(2) Sample θ1

(j+1) from p (θ1 | θ2(j),...,θk(j), D);
(3) Sample θ2

(j+1) from p (θ2 | θ1(j+1), θ3(j) ... , θk(j), D);
. . .
(4) Sample θk

(j+1) from p (θk | θ1(j+1), θ2(j+1) ... , θk-1(j+1), D);
(5) Repeat step 2 thousands of times.
An extensive discussion of the Gibbs sampler can be found
in Gelman et al. (1995).
Returning to the whale problem, since N is expressed as a

function of ∆ and Nm, its full conditional posterior
distribution is estimated through the estimated values of
those quantities. Expression (2) can be rewritten in terms of

.

Such reparameterisation allows an easy to sample full
conditional posterior distribution to de described for ϕ. Since

,

for each updated value of ϕ the corresponding updated
value of can ∆ be obtained.

The following prior distributions are considered:
pj ~ beta(a,b), j=1,…,t;
φ ~ beta(c,d);
π(Nm) ∝ 1/ Nm, i.e. the Jeffreys’ prior (see Gelman et al.,
1995).

The values a, b, c and d are hyperparameters are discussed
later.
Considering prior independence among the parameters, the
joint prior distribution is described by
π(θ) = π(Nm

, p, ϕ) = π(Nm)π(p)π(ϕ).
Thus, the corresponding joint posterior distribution of
θ = (Nm

, p, ϕ) is
π (ϕ, p, Nm

| {uω } , {X
m
j } , {X j}) ∝ L ( ϕ, p, Nm)

π(ϕ)π(p)π(Nm
) (3)

The Gibbs procedure for generating samples from the joint
posterior distribution of
θ = (Nm

, {pj}, φ)
consists of drawing the θ values through the following
sequence of draws:

(4)

(5)

(6)

Expressions (4) to (6) represent the full posterior
distributions of φ, Nm and pj , respectively. The distributions
in (4) and (6) are easily obtained. Expression (5) is obtained
when, in expression (3), we consider only the terms
involving Nm:
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Notice that Pr ( { uω } | p , Nm ) accounts for the marked
part of the population and is related to Darroch’s model,
which is completely described in terms of the set of random
variables {uω} (along with the appropriate parameters p and
Nm, only). Thus, the knowledge about {X j} and {Xm

j} is
irrelevant, justifying them to be dropped. In the expression
Pr ( {Xm

j} | {X j}, ∆), a binomial distribution can be seen,
which incorporates, through the number of good photos of
unmarked individuals, the information about the unmarked
part of the population. The absence of parameters p and Nm

shows that they are clearly not important in describing such
a part of the model. Using vague beta priors for the capture
probabilities and the adaptive rejection sampling method
(ARS) by Gilks and Wild (1992) for drawing values from
the full conditional posterior distribution of ∆, da-Silva et al.
(2003) estimated N for real and simulated bowhead whale
data. In that work, the full conditional posterior distributions
of N and {pj} were standard, and could be sampled without
any difficulty. An alternative way (the Gibbs sampling
algorithm) to obtain Monte Carlo estimates of the posterior
distribution of N is presented below.

GIBBS SAMPLING FOR ESTIMATING N
In this section, alternative methods to the ones proposed by
da-Silva et al. (2003) are described for drawing samples
from the joint posterior distribution of θ = ( Nm,{ pj }, ∆).
The Gibbs sampling is essentially a special case of the
Metropolis-Hastings algorithm (Hastings, 1970; Metropolis
et al., 1953); which generates a Markov chain by sampling
from full conditional distributions. Each iteration cycle of
the Gibbs sampler gives an updated vector of the estimated
values of θ. Each coordinate of is sampled conditionally to
the values of the other components. For a very large number
of Gibbs sampling cycles, the sampled values of θ are from
the joint posterior distribution. The joint posterior is our
target distribution.
Let θ = (θ1,...,θk) be a k dimensional vector of unknowns,

D a vector of observed data and P ( θ | D ) be the
corresponding joint posterior distribution. Let P ( θj |D, θ-j )
be the full conditional distribution of θj, and θ-j denote the
vector θ with θj removed. The following scheme illustrates
the Gibbs sampling method for generating samples from
P ( θ | D ),
(1) Choose starting values θ1

(0)
,...,θk

(0);
(2) Sample θ1

(j+1) from p (θ1 | θ2(j),...,θk(j), D);
(3) Sample θ2

(j+1) from p (θ2 | θ1(j+1), θ3(j) ... , θk(j), D);
. . .
(4) Sample θk

(j+1) from p (θk | θ1(j+1), θ2(j+1) ... , θk-1(j+1), D);
(5) Repeat step 2 thousands of times.
An extensive discussion of the Gibbs sampler can be found
in Gelman et al. (1995).
Returning to the whale problem, since N is expressed as a

function of ∆ and Nm, its full conditional posterior
distribution is estimated through the estimated values of
those quantities. Expression (2) can be rewritten in terms of

.

Such reparameterisation allows an easy to sample full
conditional posterior distribution to de described for ϕ. Since

,

for each updated value of ϕ the corresponding updated
value of can ∆ be obtained.

The following prior distributions are considered:
pj ~ beta(a,b), j=1,…,t;
φ ~ beta(c,d);
π(Nm) ∝ 1/ Nm, i.e. the Jeffreys’ prior (see Gelman et al.,
1995).

The values a, b, c and d are hyperparameters are discussed
later.
Considering prior independence among the parameters, the
joint prior distribution is described by
π(θ) = π(Nm

, p, ϕ) = π(Nm)π(p)π(ϕ).
Thus, the corresponding joint posterior distribution of
θ = (Nm

, p, ϕ) is
π (ϕ, p, Nm

| {uω } , {X
m
j } , {X j}) ∝ L ( ϕ, p, Nm)

π(ϕ)π(p)π(Nm
) (3)

The Gibbs procedure for generating samples from the joint
posterior distribution of
θ = (Nm

, {pj}, φ)
consists of drawing the θ values through the following
sequence of draws:

(4)

(5)

(6)

Expressions (4) to (6) represent the full posterior
distributions of φ, Nm and pj , respectively. The distributions
in (4) and (6) are easily obtained. Expression (5) is obtained
when, in expression (3), we consider only the terms
involving Nm:
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Notice that Pr ( { uω } | p , Nm ) accounts for the marked
part of the population and is related to Darroch’s model,
which is completely described in terms of the set of random
variables {uω} (along with the appropriate parameters p and
Nm, only). Thus, the knowledge about {X j} and {Xm

j} is
irrelevant, justifying them to be dropped. In the expression
Pr ( {Xm

j} | {X j}, ∆), a binomial distribution can be seen,
which incorporates, through the number of good photos of
unmarked individuals, the information about the unmarked
part of the population. The absence of parameters p and Nm

shows that they are clearly not important in describing such
a part of the model. Using vague beta priors for the capture
probabilities and the adaptive rejection sampling method
(ARS) by Gilks and Wild (1992) for drawing values from
the full conditional posterior distribution of ∆, da-Silva et al.
(2003) estimated N for real and simulated bowhead whale
data. In that work, the full conditional posterior distributions
of N and {pj} were standard, and could be sampled without
any difficulty. An alternative way (the Gibbs sampling
algorithm) to obtain Monte Carlo estimates of the posterior
distribution of N is presented below.

GIBBS SAMPLING FOR ESTIMATING N
In this section, alternative methods to the ones proposed by
da-Silva et al. (2003) are described for drawing samples
from the joint posterior distribution of θ = ( Nm,{ pj }, ∆).
The Gibbs sampling is essentially a special case of the
Metropolis-Hastings algorithm (Hastings, 1970; Metropolis
et al., 1953); which generates a Markov chain by sampling
from full conditional distributions. Each iteration cycle of
the Gibbs sampler gives an updated vector of the estimated
values of θ. Each coordinate of is sampled conditionally to
the values of the other components. For a very large number
of Gibbs sampling cycles, the sampled values of θ are from
the joint posterior distribution. The joint posterior is our
target distribution.
Let θ = (θ1,...,θk) be a k dimensional vector of unknowns,

D a vector of observed data and P ( θ | D ) be the
corresponding joint posterior distribution. Let P ( θj |D, θ-j )
be the full conditional distribution of θj, and θ-j denote the
vector θ with θj removed. The following scheme illustrates
the Gibbs sampling method for generating samples from
P ( θ | D ),
(1) Choose starting values θ1

(0)
,...,θk

(0);
(2) Sample θ1

(j+1) from p (θ1 | θ2(j),...,θk(j), D);
(3) Sample θ2

(j+1) from p (θ2 | θ1(j+1), θ3(j) ... , θk(j), D);
. . .
(4) Sample θk

(j+1) from p (θk | θ1(j+1), θ2(j+1) ... , θk-1(j+1), D);
(5) Repeat step 2 thousands of times.
An extensive discussion of the Gibbs sampler can be found
in Gelman et al. (1995).
Returning to the whale problem, since N is expressed as a

function of ∆ and Nm, its full conditional posterior
distribution is estimated through the estimated values of
those quantities. Expression (2) can be rewritten in terms of

.

Such reparameterisation allows an easy to sample full
conditional posterior distribution to de described for ϕ. Since

,

for each updated value of ϕ the corresponding updated
value of can ∆ be obtained.

The following prior distributions are considered:
pj ~ beta(a,b), j=1,…,t;
φ ~ beta(c,d);
π(Nm) ∝ 1/ Nm, i.e. the Jeffreys’ prior (see Gelman et al.,
1995).

The values a, b, c and d are hyperparameters are discussed
later.
Considering prior independence among the parameters, the
joint prior distribution is described by
π(θ) = π(Nm

, p, ϕ) = π(Nm)π(p)π(ϕ).
Thus, the corresponding joint posterior distribution of
θ = (Nm

, p, ϕ) is
π (ϕ, p, Nm

| {uω } , {X
m
j } , {X j}) ∝ L ( ϕ, p, Nm)

π(ϕ)π(p)π(Nm
) (3)

The Gibbs procedure for generating samples from the joint
posterior distribution of
θ = (Nm

, {pj}, φ)
consists of drawing the θ values through the following
sequence of draws:

(4)

(5)

(6)

Expressions (4) to (6) represent the full posterior
distributions of φ, Nm and pj , respectively. The distributions
in (4) and (6) are easily obtained. Expression (5) is obtained
when, in expression (3), we consider only the terms
involving Nm:
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Notice that Pr ( { uω } | p , Nm ) accounts for the marked
part of the population and is related to Darroch’s model,
which is completely described in terms of the set of random
variables {uω} (along with the appropriate parameters p and
Nm, only). Thus, the knowledge about {X j} and {Xm

j} is
irrelevant, justifying them to be dropped. In the expression
Pr ( {Xm

j} | {X j}, ∆), a binomial distribution can be seen,
which incorporates, through the number of good photos of
unmarked individuals, the information about the unmarked
part of the population. The absence of parameters p and Nm

shows that they are clearly not important in describing such
a part of the model. Using vague beta priors for the capture
probabilities and the adaptive rejection sampling method
(ARS) by Gilks and Wild (1992) for drawing values from
the full conditional posterior distribution of ∆, da-Silva et al.
(2003) estimated N for real and simulated bowhead whale
data. In that work, the full conditional posterior distributions
of N and {pj} were standard, and could be sampled without
any difficulty. An alternative way (the Gibbs sampling
algorithm) to obtain Monte Carlo estimates of the posterior
distribution of N is presented below.

GIBBS SAMPLING FOR ESTIMATING N
In this section, alternative methods to the ones proposed by
da-Silva et al. (2003) are described for drawing samples
from the joint posterior distribution of θ = ( Nm,{ pj }, ∆).
The Gibbs sampling is essentially a special case of the
Metropolis-Hastings algorithm (Hastings, 1970; Metropolis
et al., 1953); which generates a Markov chain by sampling
from full conditional distributions. Each iteration cycle of
the Gibbs sampler gives an updated vector of the estimated
values of θ. Each coordinate of is sampled conditionally to
the values of the other components. For a very large number
of Gibbs sampling cycles, the sampled values of θ are from
the joint posterior distribution. The joint posterior is our
target distribution.
Let θ = (θ1,...,θk) be a k dimensional vector of unknowns,

D a vector of observed data and P ( θ | D ) be the
corresponding joint posterior distribution. Let P ( θj |D, θ-j )
be the full conditional distribution of θj, and θ-j denote the
vector θ with θj removed. The following scheme illustrates
the Gibbs sampling method for generating samples from
P ( θ | D ),
(1) Choose starting values θ1

(0)
,...,θk

(0);
(2) Sample θ1

(j+1) from p (θ1 | θ2(j),...,θk(j), D);
(3) Sample θ2

(j+1) from p (θ2 | θ1(j+1), θ3(j) ... , θk(j), D);
. . .
(4) Sample θk

(j+1) from p (θk | θ1(j+1), θ2(j+1) ... , θk-1(j+1), D);
(5) Repeat step 2 thousands of times.
An extensive discussion of the Gibbs sampler can be found
in Gelman et al. (1995).

Returning to the whale problem, since N is expressed as a
function of ∆ and Nm, its full conditional posterior
distribution is estimated through the estimated values of
those quantities. Expression (2) can be rewritten in terms of

.

Such reparameterisation allows an easy to sample full
conditional posterior distribution to de described for ϕ. Since

,

for each updated value of ϕ the corresponding updated
value of can ∆ be obtained.

The following prior distributions are considered:
pj ~ beta(a,b), j=1,…,t;
φ ~ beta(c,d);
π(Nm) ∝ 1/ Nm, i.e. the Jeffreys’ prior (see Gelman et al.,
1995).

The values a, b, c and d are hyperparameters are discussed
later.
Considering prior independence among the parameters, the
joint prior distribution is described by
π(θ) = π(Nm

, p, ϕ) = π(Nm)π(p)π(ϕ).
Thus, the corresponding joint posterior distribution of
θ = (Nm

, p, ϕ) is
π (ϕ, p, Nm

| {uω } , {X
m
j } , {X j}) ∝ L ( ϕ, p, Nm)

π(ϕ)π(p)π(Nm
) (3)

The Gibbs procedure for generating samples from the joint
posterior distribution of
θ = (Nm

, {pj}, φ)
consists of drawing the θ values through the following
sequence of draws:

(4)

(5)

(6)

Expressions (4) to (6) represent the full posterior
distributions of φ, Nm and pj , respectively. The distributions
in (4) and (6) are easily obtained. Expression (5) is obtained
when, in expression (3), we consider only the terms
involving Nm:
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Notice that Pr ( { uω } | p , Nm ) accounts for the marked
part of the population and is related to Darroch’s model,
which is completely described in terms of the set of random
variables {uω} (along with the appropriate parameters p and
Nm, only). Thus, the knowledge about {X j} and {Xm

j} is
irrelevant, justifying them to be dropped. In the expression
Pr ( {Xm

j} | {X j}, ∆), a binomial distribution can be seen,
which incorporates, through the number of good photos of
unmarked individuals, the information about the unmarked
part of the population. The absence of parameters p and Nm

shows that they are clearly not important in describing such
a part of the model. Using vague beta priors for the capture
probabilities and the adaptive rejection sampling method
(ARS) by Gilks and Wild (1992) for drawing values from
the full conditional posterior distribution of ∆, da-Silva et al.
(2003) estimated N for real and simulated bowhead whale
data. In that work, the full conditional posterior distributions
of N and {pj} were standard, and could be sampled without
any difficulty. An alternative way (the Gibbs sampling
algorithm) to obtain Monte Carlo estimates of the posterior
distribution of N is presented below.

GIBBS SAMPLING FOR ESTIMATING N
In this section, alternative methods to the ones proposed by
da-Silva et al. (2003) are described for drawing samples
from the joint posterior distribution of θ = ( Nm,{ pj }, ∆).
The Gibbs sampling is essentially a special case of the
Metropolis-Hastings algorithm (Hastings, 1970; Metropolis
et al., 1953); which generates a Markov chain by sampling
from full conditional distributions. Each iteration cycle of
the Gibbs sampler gives an updated vector of the estimated
values of θ. Each coordinate of is sampled conditionally to
the values of the other components. For a very large number
of Gibbs sampling cycles, the sampled values of θ are from
the joint posterior distribution. The joint posterior is our
target distribution.
Let θ = (θ1,...,θk) be a k dimensional vector of unknowns,

D a vector of observed data and P ( θ | D ) be the
corresponding joint posterior distribution. Let P ( θj |D, θ-j )
be the full conditional distribution of θj, and θ-j denote the
vector θ with θj removed. The following scheme illustrates
the Gibbs sampling method for generating samples from
P ( θ | D ),
(1) Choose starting values θ1

(0)
,...,θk

(0);
(2) Sample θ1

(j+1) from p (θ1 | θ2(j),...,θk(j), D);
(3) Sample θ2

(j+1) from p (θ2 | θ1(j+1), θ3(j) ... , θk(j), D);
. . .
(4) Sample θk

(j+1) from p (θk | θ1(j+1), θ2(j+1) ... , θk-1(j+1), D);
(5) Repeat step 2 thousands of times.
An extensive discussion of the Gibbs sampler can be found
in Gelman et al. (1995).
Returning to the whale problem, since N is expressed as a

function of ∆ and Nm, its full conditional posterior
distribution is estimated through the estimated values of
those quantities. Expression (2) can be rewritten in terms of

.

Such reparameterisation allows an easy to sample full
conditional posterior distribution to de described for ϕ. Since

,

for each updated value of ϕ the corresponding updated
value of can ∆ be obtained.

The following prior distributions are considered:
pj ~ beta(a,b), j=1,…,t;
φ ~ beta(c,d);
π(Nm) ∝ 1/ Nm, i.e. the Jeffreys’ prior (see Gelman et al.,
1995).

The values a, b, c and d are hyperparameters are discussed
later.
Considering prior independence among the parameters, the
joint prior distribution is described by
π(θ) = π(Nm

, p, ϕ) = π(Nm)π(p)π(ϕ).
Thus, the corresponding joint posterior distribution of
θ = (Nm

, p, ϕ) is
π (ϕ, p, Nm

| {uω } , {X
m
j } , {X j}) ∝ L ( ϕ, p, Nm)

π(ϕ)π(p)π(Nm
) (3)

The Gibbs procedure for generating samples from the joint
posterior distribution of
θ = (Nm

, {pj}, φ)
consists of drawing the θ values through the following
sequence of draws:

(4)

(5)

(6)

Expressions (4) to (6) represent the full posterior
distributions of φ, Nm and pj , respectively. The distributions
in (4) and (6) are easily obtained. Expression (5) is obtained
when, in expression (3), we consider only the terms
involving Nm:
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Notice that Pr ( { uω } | p , Nm ) accounts for the marked
part of the population and is related to Darroch’s model,
which is completely described in terms of the set of random
variables {uω} (along with the appropriate parameters p and
Nm, only). Thus, the knowledge about {X j} and {Xm

j} is
irrelevant, justifying them to be dropped. In the expression
Pr ( {Xm

j} | {X j}, ∆), a binomial distribution can be seen,
which incorporates, through the number of good photos of
unmarked individuals, the information about the unmarked
part of the population. The absence of parameters p and Nm

shows that they are clearly not important in describing such
a part of the model. Using vague beta priors for the capture
probabilities and the adaptive rejection sampling method
(ARS) by Gilks and Wild (1992) for drawing values from
the full conditional posterior distribution of ∆, da-Silva et al.
(2003) estimated N for real and simulated bowhead whale
data. In that work, the full conditional posterior distributions
of N and {pj} were standard, and could be sampled without
any difficulty. An alternative way (the Gibbs sampling
algorithm) to obtain Monte Carlo estimates of the posterior
distribution of N is presented below.

GIBBS SAMPLING FOR ESTIMATING N
In this section, alternative methods to the ones proposed by
da-Silva et al. (2003) are described for drawing samples
from the joint posterior distribution of θ = ( Nm,{ pj }, ∆).
The Gibbs sampling is essentially a special case of the
Metropolis-Hastings algorithm (Hastings, 1970; Metropolis
et al., 1953); which generates a Markov chain by sampling
from full conditional distributions. Each iteration cycle of
the Gibbs sampler gives an updated vector of the estimated
values of θ. Each coordinate of is sampled conditionally to
the values of the other components. For a very large number
of Gibbs sampling cycles, the sampled values of θ are from
the joint posterior distribution. The joint posterior is our
target distribution.
Let θ = (θ1,...,θk) be a k dimensional vector of unknowns,

D a vector of observed data and P ( θ | D ) be the
corresponding joint posterior distribution. Let P ( θj |D, θ-j )
be the full conditional distribution of θj, and θ-j denote the
vector θ with θj removed. The following scheme illustrates
the Gibbs sampling method for generating samples from
P ( θ | D ),
(1) Choose starting values θ1

(0)
,...,θk

(0);
(2) Sample θ1

(j+1) from p (θ1 | θ2(j),...,θk(j), D);
(3) Sample θ2

(j+1) from p (θ2 | θ1(j+1), θ3(j) ... , θk(j), D);
. . .
(4) Sample θk

(j+1) from p (θk | θ1(j+1), θ2(j+1) ... , θk-1(j+1), D);
(5) Repeat step 2 thousands of times.
An extensive discussion of the Gibbs sampler can be found
in Gelman et al. (1995).
Returning to the whale problem, since N is expressed as a

function of ∆ and Nm, its full conditional posterior
distribution is estimated through the estimated values of
those quantities. Expression (2) can be rewritten in terms of

.

Such reparameterisation allows an easy to sample full
conditional posterior distribution to de described for ϕ. Since

,

for each updated value of ϕ the corresponding updated
value of can ∆ be obtained.

The following prior distributions are considered:
pj ~ beta(a,b), j=1,…,t;
φ ~ beta(c,d);
π(Nm) ∝ 1/ Nm, i.e. the Jeffreys’ prior (see Gelman et al.,
1995).

The values a, b, c and d are hyperparameters are discussed
later.
Considering prior independence among the parameters, the
joint prior distribution is described by
π(θ) = π(Nm

, p, ϕ) = π(Nm)π(p)π(ϕ).
Thus, the corresponding joint posterior distribution of
θ = (Nm

, p, ϕ) is
π (ϕ, p, Nm

| {uω } , {X
m
j } , {X j}) ∝ L ( ϕ, p, Nm)

π(ϕ)π(p)π(Nm
) (3)

The Gibbs procedure for generating samples from the joint
posterior distribution of
θ = (Nm

, {pj}, φ)
consists of drawing the θ values through the following
sequence of draws:

(4)

(5)

(6)

Expressions (4) to (6) represent the full posterior
distributions of φ, Nm and pj , respectively. The distributions
in (4) and (6) are easily obtained. Expression (5) is obtained
when, in expression (3), we consider only the terms
involving Nm:
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Notice that Pr ( { uω } | p , Nm ) accounts for the marked
part of the population and is related to Darroch’s model,
which is completely described in terms of the set of random
variables {uω} (along with the appropriate parameters p and
Nm, only). Thus, the knowledge about {X j} and {Xm

j} is
irrelevant, justifying them to be dropped. In the expression
Pr ( {Xm

j} | {X j}, ∆), a binomial distribution can be seen,
which incorporates, through the number of good photos of
unmarked individuals, the information about the unmarked
part of the population. The absence of parameters p and Nm

shows that they are clearly not important in describing such
a part of the model. Using vague beta priors for the capture
probabilities and the adaptive rejection sampling method
(ARS) by Gilks and Wild (1992) for drawing values from
the full conditional posterior distribution of ∆, da-Silva et al.
(2003) estimated N for real and simulated bowhead whale
data. In that work, the full conditional posterior distributions
of N and {pj} were standard, and could be sampled without
any difficulty. An alternative way (the Gibbs sampling
algorithm) to obtain Monte Carlo estimates of the posterior
distribution of N is presented below.

GIBBS SAMPLING FOR ESTIMATING N
In this section, alternative methods to the ones proposed by
da-Silva et al. (2003) are described for drawing samples
from the joint posterior distribution of θ = ( Nm,{ pj }, ∆).
The Gibbs sampling is essentially a special case of the
Metropolis-Hastings algorithm (Hastings, 1970; Metropolis
et al., 1953); which generates a Markov chain by sampling
from full conditional distributions. Each iteration cycle of
the Gibbs sampler gives an updated vector of the estimated
values of θ. Each coordinate of is sampled conditionally to
the values of the other components. For a very large number
of Gibbs sampling cycles, the sampled values of θ are from
the joint posterior distribution. The joint posterior is our
target distribution.
Let θ = (θ1,...,θk) be a k dimensional vector of unknowns,

D a vector of observed data and P ( θ | D ) be the
corresponding joint posterior distribution. Let P ( θj |D, θ-j )
be the full conditional distribution of θj, and θ-j denote the
vector θ with θj removed. The following scheme illustrates
the Gibbs sampling method for generating samples from
P ( θ | D ),
(1) Choose starting values θ1

(0)
,...,θk

(0);
(2) Sample θ1

(j+1) from p (θ1 | θ2(j),...,θk(j), D);
(3) Sample θ2

(j+1) from p (θ2 | θ1(j+1), θ3(j) ... , θk(j), D);
. . .
(4) Sample θk

(j+1) from p (θk | θ1(j+1), θ2(j+1) ... , θk-1(j+1), D);
(5) Repeat step 2 thousands of times.
An extensive discussion of the Gibbs sampler can be found
in Gelman et al. (1995).

Returning to the whale problem, since N is expressed as a
function of ∆ and Nm, its full conditional posterior
distribution is estimated through the estimated values of
those quantities. Expression (2) can be rewritten in terms of

.

Such reparameterisation allows an easy to sample full
conditional posterior distribution to de described for ϕ. Since

,

for each updated value of ϕ the corresponding updated
value of can ∆ be obtained.

The following prior distributions are considered:
pj ~ beta(a,b), j=1,…,t;
φ ~ beta(c,d);
π(Nm) ∝ 1/ Nm, i.e. the Jeffreys’ prior (see Gelman et al.,
1995).

The values a, b, c and d are hyperparameters are discussed
later.
Considering prior independence among the parameters, the
joint prior distribution is described by
π(θ) = π(Nm

, p, ϕ) = π(Nm)π(p)π(ϕ).
Thus, the corresponding joint posterior distribution of
θ = (Nm

, p, ϕ) is
π (ϕ, p, Nm

| {uω } , {X
m
j } , {X j}) ∝ L ( ϕ, p, Nm)

π(ϕ)π(p)π(Nm
) (3)

The Gibbs procedure for generating samples from the joint
posterior distribution of
θ = (Nm

, {pj}, φ)
consists of drawing the θ values through the following
sequence of draws:

(4)

(5)

(6)

Expressions (4) to (6) represent the full posterior
distributions of φ, Nm and pj , respectively. The distributions
in (4) and (6) are easily obtained. Expression (5) is obtained
when, in expression (3), we consider only the terms
involving Nm:
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Since

Notice that Pr ( { uω } | p , Nm ) accounts for the marked
part of the population and is related to Darroch’s model,
which is completely described in terms of the set of random
variables {uω} (along with the appropriate parameters p and
Nm, only). Thus, the knowledge about {X j} and {Xm

j} is
irrelevant, justifying them to be dropped. In the expression
Pr ( {Xm

j} | {X j}, ∆), a binomial distribution can be seen,
which incorporates, through the number of good photos of
unmarked individuals, the information about the unmarked
part of the population. The absence of parameters p and Nm

shows that they are clearly not important in describing such
a part of the model. Using vague beta priors for the capture
probabilities and the adaptive rejection sampling method
(ARS) by Gilks and Wild (1992) for drawing values from
the full conditional posterior distribution of ∆, da-Silva et al.
(2003) estimated N for real and simulated bowhead whale
data. In that work, the full conditional posterior distributions
of N and {pj} were standard, and could be sampled without
any difficulty. An alternative way (the Gibbs sampling
algorithm) to obtain Monte Carlo estimates of the posterior
distribution of N is presented below.

GIBBS SAMPLING FOR ESTIMATING N
In this section, alternative methods to the ones proposed by
da-Silva et al. (2003) are described for drawing samples
from the joint posterior distribution of θ = ( Nm,{ pj }, ∆).
The Gibbs sampling is essentially a special case of the
Metropolis-Hastings algorithm (Hastings, 1970; Metropolis
et al., 1953); which generates a Markov chain by sampling
from full conditional distributions. Each iteration cycle of
the Gibbs sampler gives an updated vector of the estimated
values of θ. Each coordinate of is sampled conditionally to
the values of the other components. For a very large number
of Gibbs sampling cycles, the sampled values of θ are from
the joint posterior distribution. The joint posterior is our
target distribution.
Let θ = (θ1,...,θk) be a k dimensional vector of unknowns,

D a vector of observed data and P ( θ | D ) be the
corresponding joint posterior distribution. Let P ( θj |D, θ-j )
be the full conditional distribution of θj, and θ-j denote the
vector θ with θj removed. The following scheme illustrates
the Gibbs sampling method for generating samples from
P ( θ | D ),
(1) Choose starting values θ1

(0)
,...,θk

(0);
(2) Sample θ1

(j+1) from p (θ1 | θ2(j),...,θk(j), D);
(3) Sample θ2

(j+1) from p (θ2 | θ1(j+1), θ3(j) ... , θk(j), D);
. . .
(4) Sample θk

(j+1) from p (θk | θ1(j+1), θ2(j+1) ... , θk-1(j+1), D);
(5) Repeat step 2 thousands of times.
An extensive discussion of the Gibbs sampler can be found
in Gelman et al. (1995).

Returning to the whale problem, since N is expressed as a
function of ∆ and Nm, its full conditional posterior
distribution is estimated through the estimated values of
those quantities. Expression (2) can be rewritten in terms of

.

Such reparameterisation allows an easy to sample full
conditional posterior distribution to de described for ϕ. Since

,

for each updated value of ϕ the corresponding updated
value of can ∆ be obtained.

The following prior distributions are considered:
pj ~ beta(a,b), j=1,…,t;
φ ~ beta(c,d);
π(Nm) ∝ 1/ Nm, i.e. the Jeffreys’ prior (see Gelman et al.,
1995).

The values a, b, c and d are hyperparameters are discussed
later.
Considering prior independence among the parameters, the
joint prior distribution is described by
π(θ) = π(Nm

, p, ϕ) = π(Nm)π(p)π(ϕ).
Thus, the corresponding joint posterior distribution of
θ = (Nm

, p, ϕ) is
π (ϕ, p, Nm

| {uω } , {X
m
j } , {X j}) ∝ L ( ϕ, p, Nm)

π(ϕ)π(p)π(Nm
) (3)

The Gibbs procedure for generating samples from the joint
posterior distribution of
θ = (Nm

, {pj}, φ)
consists of drawing the θ values through the following
sequence of draws:

(4)

(5)

(6)

Expressions (4) to (6) represent the full posterior
distributions of φ, Nm and pj , respectively. The distributions
in (4) and (6) are easily obtained. Expression (5) is obtained
when, in expression (3), we consider only the terms
involving Nm:
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where φ = and .

Therefore, the full conditional of Nm is Negative-binomial
with parameters r and η.

The values a, b, c and d of the hyperparameters are either
fixed in order to define vague priors for the { pj } and ϕ, or
estimated using an Empirical Bayes approach. This is
discussed below.

AN EMPIRICAL BAYES APPROACH
In da-Silva et al. (2003), the vague priors beta(0, 0),
beta(0.5, 0.5), and beta(1, 1) for the capture probabilities
were considered in a simulation study aiming to assess the
sensitivity of the inferences for N to the choices of the beta
hyperparameters (a, b).
For inferences about N, the authors concluded that beta

prior (0,0) causes positive bias while beta prior (1,1) causes
negative bias. Vague beta prior (0.5, 0.5) seemed to be the
best choice for the bowhead whale data.
Inferences for N can possibly be improved with better

choices of (a, b). In that sense consider an iterative
Empirical Bayes approach which consists of describing a
marginal distribution of a given random variable which is
parameterised by a and b so that estimation of these two
parameters is possible.
The approach used in this consisted of: (1) finding the

joint distribution of ({nj} | Nm,a,b); (2) given initial
guesses for a and b, obtaining a temporary estimate of Nm

using a Bayesian procedure; (3) given such an estimated
value of Nm, estimating a and b via maximum likelihood;
(4) repeating steps (2) and (3) until convergence of the
estimates of a and b; and (5) using the final estimated values
of a and b, running, one more time, the Bayesian procedure
in order to estimate Nm, φ (and then ∆) and N, using the
expression

FINDING THE JOINT DISTRIBUTION
OF
Consider a population with N* individuals and a model
where capture probabilities vary only due to temporal
effects. For the bowhead whales, let N* = Nm. Also, let pj be
the capture probability at sampling occasion j for individual
i, i = 1,..., N* and j = 1,..., t, and let nj be the sample size at
sampling occasion j, with
nj | N*, pj,a,b ~ binomial (N*, pj);
pj | a,b ~ beta (a,b).

In order to find a distribution for nj given N*, a and b, i.e.,
P(nj | N*, a, b), P(nj, pj | N*, a, b), is integrated with
respect to pj:
P(nj | N*, a, b) = ∫0

1
p (nj, pj | N*, a, b) dpj =

∫0
1
P(nj,pj | N*, a, b) P (pj | a, b) dpj

=

=
(7)

The right-hand side of expression (7) describes the
parametric form of a binomial-beta distribution with
parameters a, b and N* for variable nj (see Bernardo and
Smith, 1995, p.117). Let Ψ = (N*, a, b) and L (Ψ) be the
likelihood associated toΨ. Note that the are independent
and N* fixed, so that

(8)

ITERATIVE APPROACH TO ESTIMATE a AND b
(1) Initially consider a(o) = a and b(o) = b, where a and b are
the parameters of a vague beta prior;
(2) Using a(k–1) and b(k–1) and the Gibbs sampling discussed
earlier, obtain N̂*

(k), for the estimated value of N*. Here we
use a point estimate for N* represented by the average of the
MCMC draws from the conditional posterior distribution N*;
(3) Replace N̂*

(k) in equation (8) and obtain the maximum
likelihood estimates â(k), and b̂(k);
(4) For k = 1,... return to step 2 until convergence of a and b.
Below some analyses resulting from the application of the
methods discussed in the previous sections to simulated data
are presented.

SENSITIVITY OF THE INFERENCES FOR N
The sensitivity of the inferences for N to choices of the beta
priors is described in this section. The same bowhead whale
simulated datasets analysed by da-Silva et al. (2003) were
used.
Da Silva et al. (2000) generated bowhead whale data

considering a total of four sampling occasions in the
simulation and two intra-year occasions (spring and summer)
in 1985 and 1986. For the intra-year occasions the population
was considered closed. However, inter-year additions and
deletions were allowed for. The authors worked with five
scenarios (cases) for varying values of total population size,
capture probabilities and population size of unmarked
individuals. For each of the cases the authors generated 500
four occasion capture-recapture samples, in order to make
possible to evaluate bias and uncertainty in the estimated
values produced by the models they proposed.
In this study, only 4 of the 5 cases in da Silva et al. (2000)

are presented. For all the cases a fixed population size of
1,186 marked individuals was considered whereas the size
of the unmarked population varied from moderate to high.
Capture probabilities were set as low or high. For the
simulated data, the population sizes for the years of 1985
and 1986 were fixed as 6,649 and 6,820, respectively. Such
values were obtained using the most likely trajectory from
the Bayesian synthesis analysis by Raftery et al. (1995). The
value 1,186 for the population size of marked whales was
derived by fixing in about 82% the fraction of the unmarked
whales in the hypothetical population when the average
population size is 6,734. This percentage matched the
fraction of good photographs of unmarked whales to the
total number of good photos. For more details about the
simulated data see da Silva (1999).
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where φ = and .

Therefore, the full conditional of Nm is Negative-binomial
with parameters r and η.

The values a, b, c and d of the hyperparameters are either
fixed in order to define vague priors for the { pj } and ϕ, or
estimated using an Empirical Bayes approach. This is
discussed below.

AN EMPIRICAL BAYES APPROACH
In da-Silva et al. (2003), the vague priors beta(0, 0),
beta(0.5, 0.5), and beta(1, 1) for the capture probabilities
were considered in a simulation study aiming to assess the
sensitivity of the inferences for N to the choices of the beta
hyperparameters (a, b).
For inferences about N, the authors concluded that beta

prior (0,0) causes positive bias while beta prior (1,1) causes
negative bias. Vague beta prior (0.5, 0.5) seemed to be the
best choice for the bowhead whale data.
Inferences for N can possibly be improved with better

choices of (a, b). In that sense consider an iterative
Empirical Bayes approach which consists of describing a
marginal distribution of a given random variable which is
parameterised by a and b so that estimation of these two
parameters is possible.
The approach used in this consisted of: (1) finding the

joint distribution of ({nj} | Nm,a,b); (2) given initial
guesses for a and b, obtaining a temporary estimate of Nm

using a Bayesian procedure; (3) given such an estimated
value of Nm, estimating a and b via maximum likelihood;
(4) repeating steps (2) and (3) until convergence of the
estimates of a and b; and (5) using the final estimated values
of a and b, running, one more time, the Bayesian procedure
in order to estimate Nm, φ (and then ∆) and N, using the
expression

FINDING THE JOINT DISTRIBUTION
OF
Consider a population with N* individuals and a model
where capture probabilities vary only due to temporal
effects. For the bowhead whales, let N* = Nm. Also, let pj be
the capture probability at sampling occasion j for individual
i, i = 1,..., N* and j = 1,..., t, and let nj be the sample size at
sampling occasion j, with
nj | N*, pj,a,b ~ binomial (N*, pj);
pj | a,b ~ beta (a,b).

In order to find a distribution for nj given N*, a and b, i.e.,
P(nj | N*, a, b), P(nj, pj | N*, a, b), is integrated with
respect to pj:
P(nj | N*, a, b) = ∫0

1
p (nj, pj | N*, a, b) dpj =

∫0
1
P(nj,pj | N*, a, b) P (pj | a, b) dpj

=

=
(7)

The right-hand side of expression (7) describes the
parametric form of a binomial-beta distribution with
parameters a, b and N* for variable nj (see Bernardo and
Smith, 1995, p.117). Let Ψ = (N*, a, b) and L (Ψ) be the
likelihood associated toΨ. Note that the are independent
and N* fixed, so that

(8)

ITERATIVE APPROACH TO ESTIMATE a AND b
(1) Initially consider a(o) = a and b(o) = b, where a and b are
the parameters of a vague beta prior;
(2) Using a(k–1) and b(k–1) and the Gibbs sampling discussed
earlier, obtain N̂*

(k), for the estimated value of N*. Here we
use a point estimate for N* represented by the average of the
MCMC draws from the conditional posterior distribution N*;
(3) Replace N̂*

(k) in equation (8) and obtain the maximum
likelihood estimates â(k), and b̂(k);
(4) For k = 1,... return to step 2 until convergence of a and b.
Below some analyses resulting from the application of the
methods discussed in the previous sections to simulated data
are presented.

SENSITIVITY OF THE INFERENCES FOR N
The sensitivity of the inferences for N to choices of the beta
priors is described in this section. The same bowhead whale
simulated datasets analysed by da-Silva et al. (2003) were
used.
Da Silva et al. (2000) generated bowhead whale data

considering a total of four sampling occasions in the
simulation and two intra-year occasions (spring and summer)
in 1985 and 1986. For the intra-year occasions the population
was considered closed. However, inter-year additions and
deletions were allowed for. The authors worked with five
scenarios (cases) for varying values of total population size,
capture probabilities and population size of unmarked
individuals. For each of the cases the authors generated 500
four occasion capture-recapture samples, in order to make
possible to evaluate bias and uncertainty in the estimated
values produced by the models they proposed.
In this study, only 4 of the 5 cases in da Silva et al. (2000)

are presented. For all the cases a fixed population size of
1,186 marked individuals was considered whereas the size
of the unmarked population varied from moderate to high.
Capture probabilities were set as low or high. For the
simulated data, the population sizes for the years of 1985
and 1986 were fixed as 6,649 and 6,820, respectively. Such
values were obtained using the most likely trajectory from
the Bayesian synthesis analysis by Raftery et al. (1995). The
value 1,186 for the population size of marked whales was
derived by fixing in about 82% the fraction of the unmarked
whales in the hypothetical population when the average
population size is 6,734. This percentage matched the
fraction of good photographs of unmarked whales to the
total number of good photos. For more details about the
simulated data see da Silva (1999).
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where φ = and .

Therefore, the full conditional of Nm is Negative-binomial
with parameters r and η.

The values a, b, c and d of the hyperparameters are either
fixed in order to define vague priors for the { pj } and ϕ, or
estimated using an Empirical Bayes approach. This is
discussed below.

AN EMPIRICAL BAYES APPROACH
In da-Silva et al. (2003), the vague priors beta(0, 0),
beta(0.5, 0.5), and beta(1, 1) for the capture probabilities
were considered in a simulation study aiming to assess the
sensitivity of the inferences for N to the choices of the beta
hyperparameters (a, b).
For inferences about N, the authors concluded that beta

prior (0,0) causes positive bias while beta prior (1,1) causes
negative bias. Vague beta prior (0.5, 0.5) seemed to be the
best choice for the bowhead whale data.
Inferences for N can possibly be improved with better

choices of (a, b). In that sense consider an iterative
Empirical Bayes approach which consists of describing a
marginal distribution of a given random variable which is
parameterised by a and b so that estimation of these two
parameters is possible.
The approach used in this consisted of: (1) finding the

joint distribution of ({nj} | Nm,a,b); (2) given initial
guesses for a and b, obtaining a temporary estimate of Nm

using a Bayesian procedure; (3) given such an estimated
value of Nm, estimating a and b via maximum likelihood;
(4) repeating steps (2) and (3) until convergence of the
estimates of a and b; and (5) using the final estimated values
of a and b, running, one more time, the Bayesian procedure
in order to estimate Nm, φ (and then ∆) and N, using the
expression

FINDING THE JOINT DISTRIBUTION
OF
Consider a population with N* individuals and a model
where capture probabilities vary only due to temporal
effects. For the bowhead whales, let N* = Nm. Also, let pj be
the capture probability at sampling occasion j for individual
i, i = 1,..., N* and j = 1,..., t, and let nj be the sample size at
sampling occasion j, with
nj | N*, pj,a,b ~ binomial (N*, pj);
pj | a,b ~ beta (a,b).

In order to find a distribution for nj given N*, a and b, i.e.,
P(nj | N*, a, b), P(nj, pj | N*, a, b), is integrated with
respect to pj:
P(nj | N*, a, b) = ∫0

1
p (nj, pj | N*, a, b) dpj =

∫0
1
P(nj,pj | N*, a, b) P (pj | a, b) dpj

=

=
(7)

The right-hand side of expression (7) describes the
parametric form of a binomial-beta distribution with
parameters a, b and N* for variable nj (see Bernardo and
Smith, 1995, p.117). Let Ψ = (N*, a, b) and L (Ψ) be the
likelihood associated toΨ. Note that the are independent
and N* fixed, so that

(8)

ITERATIVE APPROACH TO ESTIMATE a AND b
(1) Initially consider a(o) = a and b(o) = b, where a and b are
the parameters of a vague beta prior;
(2) Using a(k–1) and b(k–1) and the Gibbs sampling discussed
earlier, obtain N̂*

(k), for the estimated value of N*. Here we
use a point estimate for N* represented by the average of the
MCMC draws from the conditional posterior distribution N*;
(3) Replace N̂*

(k) in equation (8) and obtain the maximum
likelihood estimates â(k), and b̂(k);
(4) For k = 1,... return to step 2 until convergence of a and b.
Below some analyses resulting from the application of the
methods discussed in the previous sections to simulated data
are presented.

SENSITIVITY OF THE INFERENCES FOR N
The sensitivity of the inferences for N to choices of the beta
priors is described in this section. The same bowhead whale
simulated datasets analysed by da-Silva et al. (2003) were
used.
Da Silva et al. (2000) generated bowhead whale data

considering a total of four sampling occasions in the
simulation and two intra-year occasions (spring and summer)
in 1985 and 1986. For the intra-year occasions the population
was considered closed. However, inter-year additions and
deletions were allowed for. The authors worked with five
scenarios (cases) for varying values of total population size,
capture probabilities and population size of unmarked
individuals. For each of the cases the authors generated 500
four occasion capture-recapture samples, in order to make
possible to evaluate bias and uncertainty in the estimated
values produced by the models they proposed.
In this study, only 4 of the 5 cases in da Silva et al. (2000)

are presented. For all the cases a fixed population size of
1,186 marked individuals was considered whereas the size
of the unmarked population varied from moderate to high.
Capture probabilities were set as low or high. For the
simulated data, the population sizes for the years of 1985
and 1986 were fixed as 6,649 and 6,820, respectively. Such
values were obtained using the most likely trajectory from
the Bayesian synthesis analysis by Raftery et al. (1995). The
value 1,186 for the population size of marked whales was
derived by fixing in about 82% the fraction of the unmarked
whales in the hypothetical population when the average
population size is 6,734. This percentage matched the
fraction of good photographs of unmarked whales to the
total number of good photos. For more details about the
simulated data see da Silva (1999).
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where φ = and .

Therefore, the full conditional of Nm is Negative-binomial
with parameters r and η.

The values a, b, c and d of the hyperparameters are either
fixed in order to define vague priors for the { pj } and ϕ, or
estimated using an Empirical Bayes approach. This is
discussed below.

AN EMPIRICAL BAYES APPROACH
In da-Silva et al. (2003), the vague priors beta(0, 0),
beta(0.5, 0.5), and beta(1, 1) for the capture probabilities
were considered in a simulation study aiming to assess the
sensitivity of the inferences for N to the choices of the beta
hyperparameters (a, b).
For inferences about N, the authors concluded that beta

prior (0,0) causes positive bias while beta prior (1,1) causes
negative bias. Vague beta prior (0.5, 0.5) seemed to be the
best choice for the bowhead whale data.
Inferences for N can possibly be improved with better

choices of (a, b). In that sense consider an iterative
Empirical Bayes approach which consists of describing a
marginal distribution of a given random variable which is
parameterised by a and b so that estimation of these two
parameters is possible.
The approach used in this consisted of: (1) finding the

joint distribution of ({nj} | Nm,a,b); (2) given initial
guesses for a and b, obtaining a temporary estimate of Nm

using a Bayesian procedure; (3) given such an estimated
value of Nm, estimating a and b via maximum likelihood;
(4) repeating steps (2) and (3) until convergence of the
estimates of a and b; and (5) using the final estimated values
of a and b, running, one more time, the Bayesian procedure
in order to estimate Nm, φ (and then ∆) and N, using the
expression

FINDING THE JOINT DISTRIBUTION
OF
Consider a population with N* individuals and a model
where capture probabilities vary only due to temporal
effects. For the bowhead whales, let N* = Nm. Also, let pj be
the capture probability at sampling occasion j for individual
i, i = 1,..., N* and j = 1,..., t, and let nj be the sample size at
sampling occasion j, with
nj | N*, pj,a,b ~ binomial (N*, pj);
pj | a,b ~ beta (a,b).

In order to find a distribution for nj given N*, a and b, i.e.,
P(nj | N*, a, b), P(nj, pj | N*, a, b), is integrated with
respect to pj:
P(nj | N*, a, b) = ∫0

1
p (nj, pj | N*, a, b) dpj =

∫0
1
P(nj,pj | N*, a, b) P (pj | a, b) dpj

=

=
(7)

The right-hand side of expression (7) describes the
parametric form of a binomial-beta distribution with
parameters a, b and N* for variable nj (see Bernardo and
Smith, 1995, p.117). Let Ψ = (N*, a, b) and L (Ψ) be the
likelihood associated toΨ. Note that the are independent
and N* fixed, so that

(8)

ITERATIVE APPROACH TO ESTIMATE a AND b
(1) Initially consider a(o) = a and b(o) = b, where a and b are
the parameters of a vague beta prior;
(2) Using a(k–1) and b(k–1) and the Gibbs sampling discussed
earlier, obtain N̂*

(k), for the estimated value of N*. Here we
use a point estimate for N* represented by the average of the
MCMC draws from the conditional posterior distribution N*;
(3) Replace N̂*

(k) in equation (8) and obtain the maximum
likelihood estimates â(k), and b̂(k);
(4) For k = 1,... return to step 2 until convergence of a and b.
Below some analyses resulting from the application of the
methods discussed in the previous sections to simulated data
are presented.

SENSITIVITY OF THE INFERENCES FOR N
The sensitivity of the inferences for N to choices of the beta
priors is described in this section. The same bowhead whale
simulated datasets analysed by da-Silva et al. (2003) were
used.
Da Silva et al. (2000) generated bowhead whale data

considering a total of four sampling occasions in the
simulation and two intra-year occasions (spring and summer)
in 1985 and 1986. For the intra-year occasions the population
was considered closed. However, inter-year additions and
deletions were allowed for. The authors worked with five
scenarios (cases) for varying values of total population size,
capture probabilities and population size of unmarked
individuals. For each of the cases the authors generated 500
four occasion capture-recapture samples, in order to make
possible to evaluate bias and uncertainty in the estimated
values produced by the models they proposed.
In this study, only 4 of the 5 cases in da Silva et al. (2000)

are presented. For all the cases a fixed population size of
1,186 marked individuals was considered whereas the size
of the unmarked population varied from moderate to high.
Capture probabilities were set as low or high. For the
simulated data, the population sizes for the years of 1985
and 1986 were fixed as 6,649 and 6,820, respectively. Such
values were obtained using the most likely trajectory from
the Bayesian synthesis analysis by Raftery et al. (1995). The
value 1,186 for the population size of marked whales was
derived by fixing in about 82% the fraction of the unmarked
whales in the hypothetical population when the average
population size is 6,734. This percentage matched the
fraction of good photographs of unmarked whales to the
total number of good photos. For more details about the
simulated data see da Silva (1999).
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For brevity consider the events: S = small capture
probabilities, U = High number of unmarked individuals in
the population, where the complementary event of E is E–.
The four cases are the following: Case 1 = ( S ,U– ), Case 2
= ( S– ,U– ), Case 3 = ( S– ,U ), Case 4 = (S ,U ). Case 2
represents the most optimistic scenario where capture
probabilities are high and the number of unmarked
individuals is moderate. Case 4 represents the most
pessimistic one, with low capture probabilities and high
number of unmarked individuals.

For the Gibbs sampling approach for estimating N

discussed earlier, , with ϕ ~ beta (c, d) was

defined. It is important to evaluate whether or not inferences
about N are sensitive not only to the choices of the values a
and b of the beta prior for the capture probabilities, but also
to choices of the values of c and d.

For each capture-recapture sample (data in this study)
from a given case, the corresponding Bayesian point
estimate of Nm was based on the average value (considering
the quadratic loss) of 1,600 MCMC pseudo-independent
draws from the full conditional posterior of Nm (see
expression (5)), obtained from 20,000 MCMC such draws,
having the first 4,000 ones discarded (burn-in period) and
using thinning of 10 observations. The convergence of the
MCMC procedure was verified by the convergence
diagnosis techniques of Gelman and Rubin (1992),
Heidelberger and Welch (1983) and Geweke (1992), which
is available in the software CODA (http://www.mrc-
bsu.cam.ac.uk/bugs/classic/coda04/readme.shtml).
Considering the Bayesian approach via Gibbs sampling,

for each Case and their corresponding 500 capture-recapture
generated samples (the data), the corresponding 500 Bayesian
estimates of Nm were obtained. Some descriptive analyses
were performed in order to evaluate bias and uncertainty of
the inferences using the proposed methodology (see Table 1).
As can be observed from Table 1, the inferences about N are
sensitive to the choices of the hyperparameters a and b for
the pjs, but not to the choices of the hyperparameters c and d
for ϕ. Therefore, any choice of the beta priors (beta(0, 0),
beta(1, 1) or beta(0.5, 0.5)) for ϕworks equally well, i.e. none
cause any remarkable bias in the estimated values of N. In
general it was noticed that the hyperparameters a=1/2 and b=1/2
for the pjs, produced smaller biases in the estimation of N.

Considering the Empirical Bayes methodology described
earlier, it can be seen from Table 2 (and also Table 1) for
Cases 1 and 2, that the Empirical Bayes methodology did
not improve the estimates with respect to either bias or
uncertainty, compared to the Bayes estimation approach
using the Gibbs sampling. For Cases 3 and 4, the Empirical
Bayes approach using the estimates for (a,b) yielded small
biases (Table 2, lines 3 and 4), whereas the Bayes method
(via Gibbs sampling), even for the best choice of vague prior
for the pjs, (a,b)= (1/2,1/2) (see second half of Table 1) had
negative biases which were greater in magnitude.

ANALYSIS USING BOWHEAD WHALE DATA
The bowhead whale photo-ID data was obtained by aerial
surveys off Barrow, Alaska. Such data consists of capture
histories for four sampling occasions (spring 1985, summer
1985, spring 1986, and summer 1986).
Of the 1,677 records in the data set, only 229 belong to

marked individuals and, of those, only 16 were captured
more than once. This gives an idea of how sparse the

bowhead whale data are. For more details about the
bowhead whale data see da Silva et al. (2000). These data
were processed (see Table 3) in order to obtain the data
needed in models (4) to (6) among others.
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Table 1
Summary statistics for estimated values of N based on 500 bowhead whale
simulated samples, using the Gibbs sampling approach and different
values of a and b and c and d . The events, S = small capture probabilities,
U = High number of unmarked individuals in the population (where the
complementary event of E is E–) describe the cases. Cases 1 and 2 are the
ones with few while Cases 3 and 4 are the ones with high numbers of
unmarked individuals.

Parameters

Case a b c d Mean Bias SD

1 ( S ,U– ) 0.0 0.0 0.0 0.0 6,845 113 773
0.5 0.5 6,843 111 772
1.0 1.0 6,842 110 771

0.5 0.5 0.0 0.0 6,695 -37 730
0.5 0.5 6,693 -40 729
1.0 1.0 6,691 -41 729

1.0 1.0 0.0 0.0 6,552 -179 693
0.5 0.5 6,550 -182 692
1.0 1.0 6,548 -184 692

2 ( S– ,U– ) 0.0 0.0 0.0 0.0 6,746 12 360
0.5 0.5 6,745 11 360
1.0 1.0 6,745 11 355

0.5 0.5 0.0 0.0 6,721 -13 356
0.5 0.5 6,720 -14 356
1.0 1.0 6,720 -15 352

1.0 1.0 0.0 0.0 6,697 -37 352
0.5 0.5 6,696 -38 352
1.0 1.0 6,695 -39 353

3 ( S– ,U ) 0.0 0.0 0.0 0.0 13,574 106 1,711
0.5 0.5 13,569 101 1,711
1.0 1.0 13,563 95 1,711

0.5 0.5 0.0 0.0 13,276 -192 1,616
0.5 0.5 13,270 -198 1,617
1.0 1.0 13,264 -204 1,615

1.0 1.0 0.0 0.0 12,995 -473 1,530
0.5 0.5 12,989 -479 1,531
1.0 1.0 12,981 -487 1,529

4 (S ,U ) 0.0 0.0 0.0 0.0 14,716 1,248 4,931
0.5 0.5 14,702 1,234 4,922
1.0 1.0 14,685 1,217 4,908

0.5 0.5 0.0 0.0 13,058 -410 3,532
0.5 0.5 13,046 -422 3,528
1.0 1.0 13,035 -433 3,529

1.0 1.0 0.0 0.0 11,817 -1,651 2,736
0.5 0.5 11,808 -1,660 2,734
1.0 1.0 11,797 -1,671 2,728

Table 2
Summary statistics (mean and bias) for the estimated values of N based on
the empirical Bayes method with 500 bowhead whale 1985 and 1986
surveys simulated data from each Case (and the corresponding and -
average values of a and b based on the 500 mentioned data). Each N
estimated according to the posterior mean based on 1,600 MCMC draws
and different values of a and b. The events, S = small capture probabilities,
U = High number of unmarked individuals in the population (where the
complementary event of E is E–) describe the cases. Cases 1 and 2 are the
ones with few while Cases 3 and 4 are the ones with high numbers of
unmarked individuals.

Case Mean Bias SD

1- ( S ,U– ) 6.1 68.8 6,761 108 763

2- ( S– ,U– ) 5.5 28.4 6,744 23 362

3- ( S– ,U ) 6.1 68.6 13,392 103 1,702

4- (S ,U ) 6.4 143.7 13,025 384 3,919
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where φ = and .

Therefore, the full conditional of Nm is Negative-binomial
with parameters r and η.

The values a, b, c and d of the hyperparameters are either
fixed in order to define vague priors for the { pj } and ϕ, or
estimated using an Empirical Bayes approach. This is
discussed below.

AN EMPIRICAL BAYES APPROACH
In da-Silva et al. (2003), the vague priors beta(0, 0),
beta(0.5, 0.5), and beta(1, 1) for the capture probabilities
were considered in a simulation study aiming to assess the
sensitivity of the inferences for N to the choices of the beta
hyperparameters (a, b).
For inferences about N, the authors concluded that beta

prior (0,0) causes positive bias while beta prior (1,1) causes
negative bias. Vague beta prior (0.5, 0.5) seemed to be the
best choice for the bowhead whale data.
Inferences for N can possibly be improved with better

choices of (a, b). In that sense consider an iterative
Empirical Bayes approach which consists of describing a
marginal distribution of a given random variable which is
parameterised by a and b so that estimation of these two
parameters is possible.
The approach used in this consisted of: (1) finding the

joint distribution of ({nj} | Nm,a,b); (2) given initial
guesses for a and b, obtaining a temporary estimate of Nm

using a Bayesian procedure; (3) given such an estimated
value of Nm, estimating a and b via maximum likelihood;
(4) repeating steps (2) and (3) until convergence of the
estimates of a and b; and (5) using the final estimated values
of a and b, running, one more time, the Bayesian procedure
in order to estimate Nm, φ (and then ∆) and N, using the
expression

FINDING THE JOINT DISTRIBUTION
OF
Consider a population with N* individuals and a model
where capture probabilities vary only due to temporal
effects. For the bowhead whales, let N* = Nm. Also, let pj be
the capture probability at sampling occasion j for individual
i, i = 1,..., N* and j = 1,..., t, and let nj be the sample size at
sampling occasion j, with
nj | N*, pj,a,b ~ binomial (N*, pj);
pj | a,b ~ beta (a,b).

In order to find a distribution for nj given N*, a and b, i.e.,
P(nj | N*, a, b), P(nj, pj | N*, a, b), is integrated with
respect to pj:
P(nj | N*, a, b) = ∫0

1
p (nj, pj | N*, a, b) dpj =

∫0
1
P(nj,pj | N*, a, b) P (pj | a, b) dpj

=

=
(7)

The right-hand side of expression (7) describes the
parametric form of a binomial-beta distribution with
parameters a, b and N* for variable nj (see Bernardo and
Smith, 1995, p.117). Let Ψ = (N*, a, b) and L (Ψ) be the
likelihood associated toΨ. Note that the are independent
and N* fixed, so that

(8)

ITERATIVE APPROACH TO ESTIMATE a AND b
(1) Initially consider a(o) = a and b(o) = b, where a and b are
the parameters of a vague beta prior;
(2) Using a(k–1) and b(k–1) and the Gibbs sampling discussed
earlier, obtain N̂*

(k), for the estimated value of N*. Here we
use a point estimate for N* represented by the average of the
MCMC draws from the conditional posterior distribution N*;
(3) Replace N̂*

(k) in equation (8) and obtain the maximum
likelihood estimates â(k), and b̂(k);
(4) For k = 1,... return to step 2 until convergence of a and b.
Below some analyses resulting from the application of the
methods discussed in the previous sections to simulated data
are presented.

SENSITIVITY OF THE INFERENCES FOR N
The sensitivity of the inferences for N to choices of the beta
priors is described in this section. The same bowhead whale
simulated datasets analysed by da-Silva et al. (2003) were
used.
Da Silva et al. (2000) generated bowhead whale data

considering a total of four sampling occasions in the
simulation and two intra-year occasions (spring and summer)
in 1985 and 1986. For the intra-year occasions the population
was considered closed. However, inter-year additions and
deletions were allowed for. The authors worked with five
scenarios (cases) for varying values of total population size,
capture probabilities and population size of unmarked
individuals. For each of the cases the authors generated 500
four occasion capture-recapture samples, in order to make
possible to evaluate bias and uncertainty in the estimated
values produced by the models they proposed.
In this study, only 4 of the 5 cases in da Silva et al. (2000)

are presented. For all the cases a fixed population size of
1,186 marked individuals was considered whereas the size
of the unmarked population varied from moderate to high.
Capture probabilities were set as low or high. For the
simulated data, the population sizes for the years of 1985
and 1986 were fixed as 6,649 and 6,820, respectively. Such
values were obtained using the most likely trajectory from
the Bayesian synthesis analysis by Raftery et al. (1995). The
value 1,186 for the population size of marked whales was
derived by fixing in about 82% the fraction of the unmarked
whales in the hypothetical population when the average
population size is 6,734. This percentage matched the
fraction of good photographs of unmarked whales to the
total number of good photos. For more details about the
simulated data see da Silva (1999).
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For brevity consider the events: S = small capture  
probabilities, U = high number of unmarked individuals in

was defined. It is important to evaluate whether or not  
inferences about N are sensitive not only to the choices of the 
values a and b of the beta prior for the capture probabilities,  
but also to choices of the values of c and d.

a,b

For brevity consider the events: S = small capture
probabilities, U = High number of unmarked individuals in
the population, where the complementary event of E is E–.
The four cases are the following: Case 1 = ( S ,U– ), Case 2
= ( S– ,U– ), Case 3 = ( S– ,U ), Case 4 = (S ,U ). Case 2
represents the most optimistic scenario where capture
probabilities are high and the number of unmarked
individuals is moderate. Case 4 represents the most
pessimistic one, with low capture probabilities and high
number of unmarked individuals.

For the Gibbs sampling approach for estimating N

discussed earlier, , with ϕ ~ beta (c, d) was

defined. It is important to evaluate whether or not inferences
about N are sensitive not only to the choices of the values a
and b of the beta prior for the capture probabilities, but also
to choices of the values of c and d.

For each capture-recapture sample (data in this study)
from a given case, the corresponding Bayesian point
estimate of Nm was based on the average value (considering
the quadratic loss) of 1,600 MCMC pseudo-independent
draws from the full conditional posterior of Nm (see
expression (5)), obtained from 20,000 MCMC such draws,
having the first 4,000 ones discarded (burn-in period) and
using thinning of 10 observations. The convergence of the
MCMC procedure was verified by the convergence
diagnosis techniques of Gelman and Rubin (1992),
Heidelberger and Welch (1983) and Geweke (1992), which
is available in the software CODA (http://www.mrc-
bsu.cam.ac.uk/bugs/classic/coda04/readme.shtml).
Considering the Bayesian approach via Gibbs sampling,

for each Case and their corresponding 500 capture-recapture
generated samples (the data), the corresponding 500 Bayesian
estimates of Nm were obtained. Some descriptive analyses
were performed in order to evaluate bias and uncertainty of
the inferences using the proposed methodology (see Table 1).
As can be observed from Table 1, the inferences about N are
sensitive to the choices of the hyperparameters a and b for
the pjs, but not to the choices of the hyperparameters c and d
for ϕ. Therefore, any choice of the beta priors (beta(0, 0),
beta(1, 1) or beta(0.5, 0.5)) for ϕworks equally well, i.e. none
cause any remarkable bias in the estimated values of N. In
general it was noticed that the hyperparameters a=1/2 and b=1/2
for the pjs, produced smaller biases in the estimation of N.

Considering the Empirical Bayes methodology described
earlier, it can be seen from Table 2 (and also Table 1) for
Cases 1 and 2, that the Empirical Bayes methodology did
not improve the estimates with respect to either bias or
uncertainty, compared to the Bayes estimation approach
using the Gibbs sampling. For Cases 3 and 4, the Empirical
Bayes approach using the estimates for (a,b) yielded small
biases (Table 2, lines 3 and 4), whereas the Bayes method
(via Gibbs sampling), even for the best choice of vague prior
for the pjs, (a,b)= (1/2,1/2) (see second half of Table 1) had
negative biases which were greater in magnitude.

ANALYSIS USING BOWHEAD WHALE DATA
The bowhead whale photo-ID data was obtained by aerial
surveys off Barrow, Alaska. Such data consists of capture
histories for four sampling occasions (spring 1985, summer
1985, spring 1986, and summer 1986).
Of the 1,677 records in the data set, only 229 belong to

marked individuals and, of those, only 16 were captured
more than once. This gives an idea of how sparse the

bowhead whale data are. For more details about the
bowhead whale data see da Silva et al. (2000). These data
were processed (see Table 3) in order to obtain the data
needed in models (4) to (6) among others.
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Table 1
Summary statistics for estimated values of N based on 500 bowhead whale
simulated samples, using the Gibbs sampling approach and different
values of a and b and c and d . The events, S = small capture probabilities,
U = High number of unmarked individuals in the population (where the
complementary event of E is E–) describe the cases. Cases 1 and 2 are the
ones with few while Cases 3 and 4 are the ones with high numbers of
unmarked individuals.

Parameters

Case a b c d Mean Bias SD

1 ( S ,U– ) 0.0 0.0 0.0 0.0 6,845 113 773
0.5 0.5 6,843 111 772
1.0 1.0 6,842 110 771

0.5 0.5 0.0 0.0 6,695 -37 730
0.5 0.5 6,693 -40 729
1.0 1.0 6,691 -41 729

1.0 1.0 0.0 0.0 6,552 -179 693
0.5 0.5 6,550 -182 692
1.0 1.0 6,548 -184 692

2 ( S– ,U– ) 0.0 0.0 0.0 0.0 6,746 12 360
0.5 0.5 6,745 11 360
1.0 1.0 6,745 11 355

0.5 0.5 0.0 0.0 6,721 -13 356
0.5 0.5 6,720 -14 356
1.0 1.0 6,720 -15 352

1.0 1.0 0.0 0.0 6,697 -37 352
0.5 0.5 6,696 -38 352
1.0 1.0 6,695 -39 353

3 ( S– ,U ) 0.0 0.0 0.0 0.0 13,574 106 1,711
0.5 0.5 13,569 101 1,711
1.0 1.0 13,563 95 1,711

0.5 0.5 0.0 0.0 13,276 -192 1,616
0.5 0.5 13,270 -198 1,617
1.0 1.0 13,264 -204 1,615

1.0 1.0 0.0 0.0 12,995 -473 1,530
0.5 0.5 12,989 -479 1,531
1.0 1.0 12,981 -487 1,529

4 (S ,U ) 0.0 0.0 0.0 0.0 14,716 1,248 4,931
0.5 0.5 14,702 1,234 4,922
1.0 1.0 14,685 1,217 4,908

0.5 0.5 0.0 0.0 13,058 -410 3,532
0.5 0.5 13,046 -422 3,528
1.0 1.0 13,035 -433 3,529

1.0 1.0 0.0 0.0 11,817 -1,651 2,736
0.5 0.5 11,808 -1,660 2,734
1.0 1.0 11,797 -1,671 2,728

Table 2
Summary statistics (mean and bias) for the estimated values of N based on
the empirical Bayes method with 500 bowhead whale 1985 and 1986
surveys simulated data from each Case (and the corresponding and -
average values of a and b based on the 500 mentioned data). Each N
estimated according to the posterior mean based on 1,600 MCMC draws
and different values of a and b. The events, S = small capture probabilities,
U = High number of unmarked individuals in the population (where the
complementary event of E is E–) describe the cases. Cases 1 and 2 are the
ones with few while Cases 3 and 4 are the ones with high numbers of
unmarked individuals.

Case Mean Bias SD

1- ( S ,U– ) 6.1 68.8 6,761 108 763

2- ( S– ,U– ) 5.5 28.4 6,744 23 362

3- ( S– ,U ) 6.1 68.6 13,392 103 1,702

4- (S ,U ) 6.4 143.7 13,025 384 3,919
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discussed earlier,



All images taken in the photographic surveys were
submitted to screening and classified using the scoring
system developed by Rugh et al. (1998). All images were
scored on the basis of their quality and identifiability.

The result of the application of the methods discussed
above are summarised in Table 4.
According to the conclusions above for Cases 3 and 4

(representing a large number of unmarked individuals in the
population), the inferences for N using the estimated (a,b)
present very small biases. Those biases are even smaller
than those obtained using the vague beta(0.5,0.5). Da-Silva
et al. (2003) estimated that the fraction Nu

| Ν of unmarked
individuals in the population to be around 0.815, i.e. the
majority of the individuals in the population do not possess
any natural marks that could be used to uniquely identify the
individuals. Therefore, for the actual bowhead whale data,
the best choice for the hyperparameters a and b is obtained
when using the Empirical Bayes approach.
When compared to the estimates obtained by Raftery and

Zeh (1998) - 6,039 (SE=1,915) and 7,734 (SE=1,450) for
1985 and 1986 respectively - and with the 1985 and 1986
estimates of 6,649 and 6,820 (excluding calves) from the
Bayesian synthesis analysis of Raftery et al. (1995), the
inferences for N obtained with the Empirical Bayes
approach (see first line of Table 4), yields smaller estimated
standard deviation than those other approaches. However, it
is not at all clear whether this is because of the Empirical
Bayes is truly more precise estimator or because the
estimate of SE produced by the Empirical Bayes approach is
downwardly biased.

CONCLUSION
The present paper considered Bayesian approaches for
estimation of the size N of animal populations considering
that: (1) the data are from a photo-ID capture-recapture
experiment; (2) capture probabilities vary only due to
temporal effects; and (3) part of the population is unmarked.
Da-Silva et al. (2003) concluded that, for such setting, the
corresponding Bayesian analysis for N is sensitive to the
choices of vague beta priors for the capture probabilities. A
Gibbs sampling approach was suggested for the estimation
of N. The objective was to define a quantity that represents

the log of the unknown fraction of the population sizes of
unmarked to marked individuals. As a function of that it was
possible to define the probability of occurrence of a good
photographs of a marked individual. Additionally, a
reparameterisation of such probability allowed further
simplification of the Gibbs sampling procedure.
Performance of the proposed methods was evaluated

through a simulation study involving bowhead whale data
generated under four different scenarios (the same as used by
da-Silva et al. 2003). An Empirical Bayes analysis was
proposed as an attempt to diminish the biases in the inferences
for N caused by sensitivity to the prior specifications of the
capture probabilities. The conclusions are given below.

(1) The use of the Empirical Bayes approach yields either
smaller or comparable biases for the estimated values of N
compared to the biases observed using the beta(0.5,0.5)
prior (the one that conducted to the smaller biases for the
Bayes estimation via Gibbs sampling).

(2) The Empirical Bayes approach apparently also improves
precision in the estimation N as revealed by the comparison
of CVs in Table 4 (however, it is possible that such
estimated standard deviation are downwardly biased).

(3) When the population includes a very large number of
unmarked individuals, inferences for N obtained using the
Empirical Bayes approach are definitely superior to the
Bayes approach (via Gibbs sampling) using any of the vague
beta priors.
Some observations and concerns about possible

violations in the model assumptions are addressed below.

(1) Possible changes in markings. Only photographs in
which the mid-back region of the whales was of good
quality, i.e. classified as 2- or better, were used in the
analyses so that whales with identifying marks in that region
would be recognised when they were photographed on more
than one sampling occasion (Quality is scored on a five-
point scale (1+, 1-, 2+, 2-, 3) indicating how much of the
area is visible: 1+ represents the highest and 3 the lowest
quality. A whale must also be at least moderately marked on
the mid-back to be treated as marked in the analyses. The
scoring system developed by Rugh et al. (1998) is stringent
enough to ensure that a whale categorised as marked on one
occasion will be recognised if photographed again on a
subsequent occasion. Miller et al. (1992) argues that it is
unlikely that large scars disappear. However, small marks
may be disguised by new marks, and they are also more
likely than large marks or groups of marks to be obscured in
a photograph. (Identifiability is scored as H+, H-, M+, M-,
U+, U-, with highly (H) and moderately (M) and unmarked
(U) whales).

(2) Closed population assumption. In the analyses
performed data were used from two different years (photo-
ID data from spring 1985, summer 1985, spring 1986 and
summer 1986). The closed population assumption does not
strictly apply since whales are born and die between
samples. However, bowhead whales have high survival rates
(George et al., 1999) and low fecundity rates (Miller et al.,
1992), which implies that the population is not expected to
suffer considerable demographic changes and the closed
population assumption to be reasonably acceptable. George
et al. (2004) discuss the population trend of Western Arctic
bowhead whales from 1978 to 2001. Their estimate of
annual rate of increase of the population in such period is
3.4%. So the estimates presented here may be somewhat
negatively biased.
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Table 3
Bowhead whale data from photo-ID surveys in the spring 1985, summer
1985, spring 1986, and summer 1986. The statistics in column 1 are the
ones needed for the models in this article.

Occasions Spring 1985 Summer 1985 Spring 1986 Summer 1986

nj 87 56 76 26

166 115 126 37

609 704 382 255

Table 4
Inferences for N based on bowhead whale data – Empirical Bayes
estimates and Gibbs sampling. Data from photo-ID data in the spring 1985,
summer 1985, spring 1986, and summer 1986.

a b N̂ CV Credible intervals (95%)

Empirical Bayes
5.9 107.7 6,340 0.162 (4,544; 8,595)

Gibbs sampling
0.0 0.0 6,690 0.261 (4,360; 10,200)
0.5 0.5 6,150 0.248 (3,970; 9,610)
1.0 1.0 5,700 0.215 (3,760; 8,500)
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prior (the one that conducted to the smaller biases for the
Bayes estimation via Gibbs sampling).

(2) The Empirical Bayes approach apparently also improves
precision in the estimation N as revealed by the comparison
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(3) When the population includes a very large number of
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Empirical Bayes approach are definitely superior to the
Bayes approach (via Gibbs sampling) using any of the vague
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Some observations and concerns about possible
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(1) Possible changes in markings. Only photographs in
which the mid-back region of the whales was of good
quality, i.e. classified as 2- or better, were used in the
analyses so that whales with identifying marks in that region
would be recognised when they were photographed on more
than one sampling occasion (Quality is scored on a five-
point scale (1+, 1-, 2+, 2-, 3) indicating how much of the
area is visible: 1+ represents the highest and 3 the lowest
quality. A whale must also be at least moderately marked on
the mid-back to be treated as marked in the analyses. The
scoring system developed by Rugh et al. (1998) is stringent
enough to ensure that a whale categorised as marked on one
occasion will be recognised if photographed again on a
subsequent occasion. Miller et al. (1992) argues that it is
unlikely that large scars disappear. However, small marks
may be disguised by new marks, and they are also more
likely than large marks or groups of marks to be obscured in
a photograph. (Identifiability is scored as H+, H-, M+, M-,
U+, U-, with highly (H) and moderately (M) and unmarked
(U) whales).

(2) Closed population assumption. In the analyses
performed data were used from two different years (photo-
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summer 1986). The closed population assumption does not
strictly apply since whales are born and die between
samples. However, bowhead whales have high survival rates
(George et al., 1999) and low fecundity rates (Miller et al.,
1992), which implies that the population is not expected to
suffer considerable demographic changes and the closed
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