
INTRODUCTION

Aboriginal whaling refers to subsistence hunting of large
whales by native communities. In the context of aboriginal
subsistence whaling a fishery type 2 as defined in IWC
(2000) is a case where a substantial amount of information
exists about the stock in question. An example of such a
fishery is the aboriginal harvesting of the eastern North
Pacific (ENP) stock of gray whales (Eschrictius robustus).
This stock has been studied extensively (e.g. Buckland and
Breiwick, 2002; Butterworth et al., 2002a; b; Wade, 2002;
Witting, 2003; Punt et al., 2004); stock identity is
unambiguous, a series of abundance observations exists
(from 1968) and estimates of various parameters are
available. However, despite this good information it has not
been possible to reconcile the catch history with the
observed population increase in recent years using a simple
density dependent population model (IWC, 1993). Various
adjustments have been proposed in order to address this
problem, see for example Butterworth et al. (2002b) and
Witting (2003). This paper addresses the problem of
determining strike limits for this stock such that the
nutritional and cultural needs of the hunting communities
(as recognised by the IWC) are satisfied without
endangering the stock.

The term Strike Limit Algorithm (SLA) is used in
connection with aboriginal whaling. An SLA is an input-
output rule or algorithm where a data series – usually
abundance data 2is input into the algorithm which produces
as output the total number of whales which can be struck in
any one year or block of years. An SLA based on Adaptive
Kalman Filtering (AKF) applied to the Bering-Chukchi-
Beaufort Seas (BCB) stock of bowhead whales (Balaena
mysticetus) has been presented earlier (Dereksdóttir and
Magnússon, 2001; 2003). This SLA is fairly general and is
applicable with suitable modifications to a range of type 2
fisheries. This paper describes in detail the Adaptive
Kalman Filtering SLA – hereafter referred to by the acronym
AKF-SLA – applied to the eastern North Pacific stock of
gray whales. This SLA forms one of the two component
SLAs that make up the gray whale SLA – known by the

acronym GUP, which stands for ‘Grand Unified Procedure’
– recommended by the Scientific Committee of the
International Whaling Commission (IWC, 2005) and
subsequently adopted by the Commission. The other
component is the Johnston-Butterworth SLA, which uses a
penalised likelihood method (see IWC, 2005 for a technical
description). The strike limit produced by the GUP is the
arithmetic average of the strike limits produced by each of
the component SLAs.

The next section describes the AKF-SLA, starting with a
general description of the basic principles, followed by a
detailed mathematical description of the various
components, which make up the SLA. Finally, some results
of testing the performance of the procedure on a set of
simulation trials specified by the Standing Working Group
on Aboriginal Whaling Management Procedure (IWC,
2005) are given, together with some explorations of its
flexibility.

THE ADAPTIVE KALMAN FILTER STRIKE LIMIT
ALGORITHM (AKF-SLA)

General description
The state estimation part of the AKF-SLA applies the
techniques of the Kalman filter (Kalman, 1960), which is a
mathematical tool to obtain estimates of the state of
stochastic dynamic systems with noisy observations, i.e.
systems with both ‘process noise’ and ‘observation noise’.
In the case of a linear system, the estimate obtained is
optimal in the sense that the mean square estimation error is
minimised. In order to apply Kalman filtering methods, a
mathematical model of the dynamics and the relationship
between the observations and the true state – i.e. the
abundance in this case – is required. The way the Kalman
filter works is that the most recent state estimate is projected
forward in time (a prediction) until a new observation
becomes available. The prediction is then compared to the
observation and the state estimate corrected. The correction
or update is proportional to the difference between the
prediction and the observation. A large difference results in
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a large correction and a small difference results in a
correspondingly small update in the estimate. The
proportionality constant, known as the Kalman gain,
depends on the magnitude of the measurement noise and the
noise in the dynamics. If the measurement noise is large and
the level of confidence in the observation therefore low, the
gain is small, thus giving a small correction in the model
prediction. On the other hand, if the measurement noise is
small relative to the process noise and the level of
confidence therefore high, the gain will be high and the
update thus large. The two extremes are to follow the
observation exactly (corresponding to zero observation
noise) or to ignore the observation completely and use only
the model to obtain the state estimate (corresponding to
infinite observation noise). The updated estimate of the state
is then projected forward in time until a new observation is
made. In the Kalman filtering application presented here, the
state of the system is the size of the stock and the
observations are the census estimates of the stock size.

The underlying model used in the SLA based on AKF is a
simple population dynamics model, together with a linear
model for the relationship between observed stock size and
true stock size. The model contains both process noise and
observation noise which are taken to be Gaussian and
additive after a log transformation of the variables.

The stock dynamics model and the observation model
contain a number of unknown parameters. In the basic
application of the AKF-SLA to gray whales, two of the
parameters, i.e. Maximum Sustainable Yield Level (MSYL)
and annual survival rate S are fixed. The remaining two
parameters, i.e. MSY-rate (MSYR) and MSY are estimated by
Bayesian methods in conjunction with the Kalman filtering
estimation scheme as described below in detail. Each of the
two parameters ranges over a sequence of discrete values
giving a two-dimensional grid of parameter values. A prior
probability distribution is given to the parameter
combinations in the grid and a Kalman filter is associated
with each combination. Other choices for the parameter grid
are possible in variants of the AKF-SLA; for example a bias
filter can be added giving a three-dimensional parameter
grid (see Dereksdóttir and Magnússon (2001) for an
application to the BCB stock of bowhead whales).

The probability associated with each parameter
combination in the grid is updated by Bayesian methods
each time a new survey estimate becomes available. The
estimate of the state associated with each of the
combinations is updated at the same time by the
corresponding Kalman filter. Thus, for each (MSYR, MSY)
combination in the grid, there corresponds a posterior
probability for this particular combination and an estimate
of the state (i.e. stock size) conditional on this particular
parameter combination. This combination of Kalman
filtering and Bayesian methodology is known as AKF. The
overall estimate of the present state (stock size) is then
obtained by summing all the stock estimates corresponding
to the different parameter combinations, weighted by the
respective probabilities. This overall stock estimate is not
used in the SLA described here.

The AKF method therefore comprises a set of Kalman
filters – one filter for each parameter combination in the
grid. The state estimates and the posterior probabilities
associated with each point in the parameter grid and with the
corresponding stock estimate are then updated every time a
new survey estimate becomes available.

A catch control law selected from a one-parameter family
of such rules is then used on the conditional estimates of
stock size. These conditional strike limits together with the

posterior distributions of the various combinations of MSYR
and MSY, give a cumulative distribution function for the
strike limit. The eventual strike limit is then determined as a
pre-specified percentile of this distribution.

The AKF-SLA: mathematical description
The Kalman Filter
It is assumed that the population dynamics and observations
are governed by the following equations:

(1)

(2)

where Nt is the total population of animals 1 year and older
(1+) in year t, Ct is the catch in year t and ut and vt are normal
random variables with zero mean and variances qt and rt ,
respectively. This is the well-known Pella-Tomlinson (P-T)
model with parameters: annual survival rate S, pre-
exploitation population size (carrying capacity) and the
resilience parameter A, which is related to MSYR by
MSYR=A(1-S)/(S(z(z+1))). The exponent z in equation (1)
determines the MSYL according to MSYL = (z + 1) –1/z N

H
.

This model is a simplification of the usual P-T models since
no delay in the dynamics is incorporated.

The state variable is defined to be x=ln(N) and the
observation y = ln(Nobs). The state and observation
equations can therefore be written in the form:

(3)

(4)

where:

(5)

The state of the system is estimated by the Extended Kalman
Filter (the equation describing the dynamics is non-linear
and hence the EKF – in which non-linear functions are
linearised – must be used). In order to apply the Kalman
filtering method a linearisation of f(x) is required:

(6)

The estimate of the state at time t, using data up to t-1 is
denoted by xt|t-1 and is known as the prior estimate of xt. The
corresponding variance at time t is:
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(7)

When a new observation yt becomes available, the estimate
xt|t-1 is updated according to:

(8)

which is the posterior estimate of xt i.e. the estimate of the
state at time t using data up to t. Here Kt is known as the
Kalman gain at time t. The term in brackets on the right hand
side is the difference between the actual observation and the
predicted observation at time t. Thus a large difference
between the actual and predicted observations will give a
large modification in the state estimate and a small
difference results in a correspondingly small modification.
The Kalman gain is given by: 

(9)

The variance Pt|t-1 is updated by:

(10)

Pt|t is the variance associated with the updated (posterior)
estimate of the state at time t. 

Finally, new prior estimators of the state and the 
variance at t+1, are obtained by the forward projection
equations:

(11)

(12)

where Ft is given by equation (6) and the linearisation is
about the point x=xt|t. The Kalman gain at time t+1 can then
be calculated and hence the posterior estimate of the state at
t+1 and so on.

Initial values for x0 and P0 (the state with an associated
variance) are required to start the filter. The natural starting
value is the pre-exploitation stock size , provided the
catch history is fully known and the stock dynamics can be
described by a standard density dependent model. This
approach is adopted in the BCB bowhead version of the
AKF-SLA (Dereksdóttir and Magnússon, 2003). However,
neither of these conditions are fullfilled for the ENP gray
whale stock so this does not work here. Since the first gray
whale abundance estimate was in 1968 it would seem
natural to start the filters in that year. However, this entails
that all trajectories pass through the value of the 1968
estimate (i.e. 12,921), which might be regarded as an
unreasonable constraint since this estimate is no more
correct than subsequent ones. One way to avoid forcing the
trajectories through the 1968 estimate is to start the filters
earlier and either use this earlier starting value as an
additional parameter to be estimated or simply start at an
arbitrary value with some associated variance.

We have selected 1930 as the starting year for the filters.
The initial condition for the Kalman filters is therefore a
stock estimate for 1930 together with an associated
coefficient of variation (CV). However, since no 
abundance estimate from 1930 exists, the starting value and
the associated variance can be freely chosen and used as
tuning parameters. The 1930 population size is
normalised by the carrying capacity N

H
, i.e. the 1930

population size is defined by a tuning parameter, a,
where N1930 = aN

H
= (MSY/(0.6MSYR)) with an associated

CV, P0, which is also used as a tuning parameter. The first
update is made in 1968 when the first abundance estimate
becomes available.

Bayesian estimation of model parameters
Equation (1) contains four unknown parameters, S, A, z, and
N
H

. Two of those, z and S are fixed at 2.39 (corresponding
to the standard choice of MSYL = 0.6 N

H
) and 0.97 (this

value lies well within the likelihood range obtained in
Butterworth et al. (2002b) and in Wade (2002)), respectively
and the others – i.e. the resilience parameter A and the
carrying capacity N

H
– estimated by Bayesian methods, or

rather, the equivalent parameters MSYR and
MSY=MSYR·0.6 N

H
are estimated. The reason for

estimating MSYR and MSY rather than MSYR and N
H

is that
the latter two parameters are usually highly negatively
correlated. Each of the two parameters range over a
sequence of discrete values giving a 2-dimensional grid of
(MSYRi,MSYj), i=1,..., I; j=1,..., J values. To each of the IJ
pairs there corresponds an extended Kalman filter. In the
ENP gray whale version the (MSYR, MSY) parameter grid is
made up of MSYR values 1%, 2%,..., 5% and 6% and MSY
ranging from 100 to 2176 in increments of 12, i.e. 6 values
of MSYR and 174 values of MSY, giving a total of 1,044
parameter combinations and the same number of filters. A
few words about the range and the increments in the grid
selected are appropriate here. Obviously, the number of
filters should be kept low for computational reasons. That
being said, there are two criteria to consider: the range of
values should be sufficiently large for parameter values
outside the range to have negligible probability; and the grid
fine enough for the calculated probability distribution
functions to be reasonably smooth and without ‘gaps’. This
question will be addressed below, but we note that the range
of MSYR values in Butterworth et al. (2002b) and Wade
(2002) is within the 1-6% range used here. Furthermore,
those authors consider a carrying capacity greater than
60,000-70,000 to be unlikely. A maximum value of 60,000
for carrying capacity and 6% for MSYR gives (assuming
MSY=0.6), MSY=0.6360,00030.006=2160 which is very
close to the maximum MSY value in the grid. However, the
ultimate test of the size and fineness of the grid lies in the
calculated posterior distributions, which will be presented
below. Since there is no prior information on the values of
the parameters MSYR and MSY, the prior distribution for the
parameter set (MSYRi, MSYj), i=1,2, .., I; j=1,2, …, J, is
assumed to be discrete uniform on the specified grid. This
probability distribution is updated every time a new census
estimate becomes available.

Whenever a new observation becomes available, the
conditional stock estimate xt|t-1 (MSYRi, MSYj), is updated as
described above and the posterior probability distribution
p(MSYRi, MSYj¡Yt) is updated for each of the pairs of
parameters by Bayesian methodology. Here Yt is the set of
observations up to and including time t. The probability
distribution is updated as follows.

Let k denote the vector of parameters (MSYR,MSY).
There are IJ possible values of k corresponding to the IJ
pairs (MSYRi, MSYj). A prior distribution, p(kk) for the
vector k is given and each time a new observation becomes
available, a posterior distribution, p(kk¡Yt=1) is updated
according to:

(13)

J. CETACEAN RES. MANAGE. 7(2):85–95, 2005 87



where the conditional distribution p(Yt¡kk) is given by the
recursive formula:

(14)

where xt¡t-1, and Pt¡t-1 depend on kk and are obtained by the
Extended Kalman Filter method. A ‘small’ prediction error
yt 2 xt¡t-1, gives a ‘high’ value of p(Yt¡kk). Finally, p(Yt) is
calculated by:

.                 (15)

To each abundance observation there is an associated
estimate of the CV. The variance of the measurement noise
nt is given by: 

(16)

The estimate of CV, CVest, in (16) is probably an
underestimate of the true CV of the abundance estimate. The
historical observations of the abundance of gray whales with
the given CV are not compatible with a standard density
dependent population model and a constant CVadd is
therefore added to all CV – estimates (historical and future)
provided to the SLA. This value is treated as a tuning
parameter.

This scheme described here for updating the state
estimate and the conditional probability distribution
associated with the parameter values is the AKF.

Catch Control Law
Applying a catch control law corresponding to each of the IJ
pairs of (MSYR,MSY) to  xt¡t-1 (MSYRi,MSYj) a sequence of
IJ strike limits is obtained, together with the associated
posterior probability distribution p(MSYRi,MSYj¡Yt),
i=1,2,…, I; j=1,..., J. Arranging all the IJ strike limits in an
increasing sequence, the associated probability distribution
makes it possible to construct the cumulative distribution
function F(C) for the strike limit. Once a percentile g of this
distribution is set, a provisional strike limit is determined by
solving:

(17)

for Ct. A one-parameter family of catch control laws is used.
If the stock size N is less than MSYL, then the conditional
strike limit is determined by the rule C=rRY, relating catch
and replacement yield (RY) as calculated from equation (1),
and by C=rMSY if N is greater than MSYL. The multiplier r
is a function of the conditional estimate of the stock size (i.e.
conditional on MSYR and MSY) and is chosen from a family
of continuous piecewise linear functions. This family is
parameterised by b, the r-value at 0.5MSYL. The multiplier
r depends on N as follows:

(18)

The parameter b is a measure of the steepness of the catch
control law (Fig. 1) and is used as a tuning parameter. A
strike limit is then set as:

(19)

where Needt is the pre-specified level of aboriginal need in
year t. All components refer to the 1+ component of the
population, i.e. the total number of animals one year and
older. 

A so-called ‘Snap to Need’ feature is incorporated
whereby the strike limit is increased to need if the
provisional strike limit resulting from the SLA exceeds 95%
of need, and finally, a maximum of 20% change in strike
limits between years is imposed. The strike limit is set for 5-
year blocks at a time.

RESULTS
A set of simulation trials – where each trial consists of 100
replicates simulated stochastically over a 100 year
management period, starting in 2003 – for evaluating the
performance of SLAs for the ENP gray whale stock have
been developed; for a full description of all the trials see
IWC (2005). The trials are conditioned on data for this
stock, i.e. on the partial history of catches, past stock
estimates, and parameter values. However, as mentioned
above, this stock poses a problem since it is not possible to
reconcile the catch history with the observed population
increase in recent years (since 1968) using a simple density
dependent population model (IWC, 1993). This problem is
bypassed in the simulation trials by starting the population
projections in 1930 – assuming a stable age distribution and
ignoring the earlier catch history – rather than with a pre-
exploitation stock size. The population rate of increase in
1930 is selected such that if the population dynamics model

Fig. 1. A family of continuous piecewise linear catch control laws with
b = 0.2, 0.4, 0.6 and 0.8. The parameter r is the fraction of
replacement yield resulting from the catch control law, i.e. C = rRY.
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is projected from 1930 to 1968, the size of the 1+
component of the population in 1968 (the year of the first
census) equals a pre-specified value, P1968, selected from a
probability distribution. Trials were also conducted with a
so-called inertia model (Witting, 2003; IWC, 2004), which
is quite different from the simple density dependent model.
The performance of the various candidate SLAs was
evaluated from a set of calculated performance statistics,
designed to capture how well aboriginal need is satisfied,
the risk to the stock as well as the stability of strike limits.
For a full definition of all the performance statistics, see
IWC (2003). 

The criteria underlying the final choice of the variant and
the tuning of the SLA, are of course the trial results, but we
will also look briefly at the ability of the algorithm to detect
the true MSYR value and to estimate the true stock size. We
only present the Depletion and Need satisfaction statistics of
a few key trials, GE01, GE04, GE10, GE16 and GE45
(Table 1). Note that need is set at 150 for 2003 and generally
increases linearly over the management period to the value
given in the column headed ‘Final need’. Depletion is
defined as the size of the population as a fraction of the
carrying capacity and need satisfaction is the number of
whales which can be struck as a fraction of the pre-specified
aboriginal need. The present gray whale evaluation trials do
not really pose a challenge to SLAs with a couple of
exceptions. Need can be fully satisfied in most cases without
depleting the stock unduly. The only exceptions are trials
GE04 (high MSYR and negatively biased future
observations) where need is not satisfied in spite of the stock
being well above MSY level, GE16 (time varying bias on the
historical observations, low MSYR and high need) and GE45
(time varying bias on the historical observations, low MSYR
and the stock crashes in 1999/2000) where the stock may
end up too depleted. 

Tuning parameters and sensitivity
The gray whale version of the AKF-SLA contains the
following tuning parameters: 

(1) b: Height of the breakpoint at 0.5MSYL in the catch
control law;

(2) g : Percentile in the cumulative distribution function for
the nominal catch limit;

(3) a: Stock size in 1930 as a fraction of carrying capacity
N
H

, i.e. N1930 = aN
H

;
(4) P0: Variance associated with N1930; 
(5) CVadd: Additional variance added to the CV given to the

SLA.

The variance in process error is not used in the tuning
process, but is fixed at q=0.001 (corresponding to a CV of
3.2%). The values of all these tuning parameters were
selected subjectively, rather than by attempting to optimise
some function of the trial results. Tests show that the trial
results are not sensitive to the value of b and this parameter

was therefore fixed at 0.7 throughout. The cumulative
distribution function for the nominal catch limit is shown in
Fig. 2 for b=0.7. This function is ‘nice and smooth’ without
the step function behaviour which occurred occasionally in
the application of the AKF-SLA to the BCB stock of
bowhead whales (Dereksdóttir and Magnússon, 2003). The
results deteriorated as P0 was increased and this parameter
was therefore fixed at zero.

Since the historical abundance estimates fluctuate rather
wildly, in fact too much if the estimated CV is to be believed,
it was considered necessary to increase this CV estimate to
limit the consequent SLA fluctuations. However, the value of
CVadd should not be set so high that the future observations
are more or less ignored. In an attempt to achieve some
balance between these two conflicting objectives, values of
CVadd=0.10 and 0.15 were (subjectively) selected. Fig. 3
shows – for one simulation of trial GE16 – how the
estimated trajectory tracks the observations more closely for
small values of CVadd. The reason for the slight ‘kink’ in the
true trajectory 1992-93 is that there was no hunting in those
two years. There is considerable discrepancy between the
true and estimated trajectories in the early part of the
historical period 1968-2003. The estimated trajectory
follows the observations, which are well below the true
trajectory to begin with. The reason lies in the negative bias
in the historical observations, which changes from 0.5 to 1.0
from 1968 to 2003. The agreement between the true and
estimated trajectories from 2003 onwards is quite good.

The impact of the 1930 parameter a with values of 0.20,
0.25 and 0.30 together with the above two values of CVadd
(0.10 and 0.15) and values of g in the range 0.3-0.8 was
investigated for two of the key trials GE16 and GE04 by
plotting simultaneously the points for depletion statistic in
the former and the need statistic in the latter (Fig. 4).
Obviously, the further to the right (better depletion in GE16)
and higher up (higher need satisfaction in GE04) the points
lie, the better. Thus, a triple (a, CVadd, g) of the three tuning

Fig. 2. The cumulative distribution function for the strike limit at the
beginning of management (2003) for a set of (MSYR, MSY) filters.
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parameters, giving a point in the Depletion-Need plane lying
both to the right and higher than a point corresponding to a
different triple is clearly preferable since performance is
better on both statistics. 

Since the goal is to maximise both the depletion and need
satisfaction statistics the most desirable tuning will provide
results in the upper right hand corner of the figure. Two
features are apparent in this figure. Firstly, tunings with
CVadd=0.15 generally outperform CVadd=0.10 for values of
g within the range 0.3-0.8, since the curves corresponding to

the former lie completely to the right and above the latter for
fixed a-values in all cases; thus an increase in CVadd with a
fixed a will move the point in the Depletion-Need plane up
and to the right (some adjustment of g may be required to
maintain supremacy). However, the difference between
CVadd=0.10 and CVadd=0.15 decreases as a and g are
increased and moreover the ability to detect sudden changes
in stock size, such as in trial GE45, diminishes with
increased CVadd. To obtain a good balance a value of 0.11
was selected for CVadd. Secondly, increasing improves
performance since the curves move up and to the right for a
fixed , except that there is a slight drop in need satisfaction
between a-values 0.25 and 0.3 for the highest g-value (0.8)
since the top of the curve is lower for a=0.30. It would
appear from Fig. 4 that a should be taken to be as high as
possible, but need satisfaction in other trials starts to
deteriorate with a=0.30. Thus, a version with a set to 0.25
was selected throughout. 

We only present here the results of the tuning referred to
as the D-M2 tuning in IWC (2005). This specific tuning of
the AKF-SLA is one of two components in the GUP
procedure. The values of the tuning parameters were set as
follows: 

b=0.7; g=0.8; a=0.25; P0=0; CVadd=0.11.

The depletion and need satisfaction results for this tuning
are given in Table 2 for the five selected trials. A complete
set of trial results for the gray whale AKF-SLA with this
tuning and for a higher tuning also are given in IWC
(2005).
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Fig. 3. Estimated and true stock trajectories from 1968 to 2100, along
with observations for one simulation of trial GE16. In figure (a)
CVadd=0, (b) CVadd=0.1 and (c) CVadd=0.2.

Fig. 4. 5th percentile Need satisfaction in GE04 and median Depletion
in GE16 for three values of a and two values of CVadd. To construct
each line g ranges from 0.3 to 0.8 in increments of 0.1 and decreases
from left to right for each pair of a and CVadd. 



Sensitivity to S, the survival rate was investigated by
looking at values 0.95, 0.96, …, 0.99. There was very little
difference in the trial results, except in trial GE16, when
depletion improves slightly with higher values of S (Table
3). The value used in the algorithm (S=0.97) is somewhat
arbitrary, but is similar to that estimated by Wade (2002). 

Sensitivity to q, the size of the process error was also
investigated. Reducing q means that greater confidence is
placed in the model and the effects of the observations are
consequently down-weighted and vice versa. The main
effect on the trial results of varying q was that the depletion
improved in the 1.5% MSYR trials (GE16 and GE45) as q
was reduced. This appears counter-intuitive at first,
especially for GE45, where the stock crashes at the start of
management, since a lower q-value will make the algorithm
less responsive to the observations and hence slower to react
to the population crash (Fig. 5 (a-c)). However, the reason is
clear from the MSYR charts in Fig. 5 (d-f) showing the time
evolution of the median, 5th and 95th percentiles from the
100 replicates of estimated MSYR (i.e. the expected value
obtained from the posterior distribution): with a low q-value
(i.e. high confidence in the model), the trajectory does not
follow the rather steep rise exhibited in the biased historical
observations as closely as with a higher q and the estimated
MSYR is therefore lower, resulting in lower strike limits. It
is worth noting from Fig. 5b that the algorithm with the
selected q-value (0.001) is responding reasonably well to the
population crash. It was therefore felt that this value of q
strikes a reasonable balance between the model and
observations.

Estimation of MSYR
Fig. 6 shows the time evolution of the probability
distribution for MSYR between 1968 and 2002 (i.e. that
based on the historical observations) and Fig. 7 shows the
posterior probability distribution in 2002 for MSYR and
MSY. Note that the probabilities of the MSYR values
illustrated in Fig. 6 and those given in each column in Fig. 7
are the marginal probabilities, obtained by integrating over
the MSY values (shown on the horizontal axis in Fig. 7).
Based on the historical observations nearly all the posterior
probability mass in 2002 is concentrated at MSYR 2% and
3%. It is worth pointing out that the probabilities for MSYR
of 1% and 6% are practically zero as are probabilities for
MSY higher than 1000. This confirms that the selected range
of the parameter grid is sufficiently wide. 

Fig. 8 shows the time evolution of the median, 5th and
95th percentiles from the 100 replicates of estimated MSYR
over the subsequent 100 years for the five key trials GE01,
GE04, GE10, GE16 and GE45. The MSYR estimate at the
beginning of management is 2.5%. For GE01, which is a

3.5% trial the median MSYR declines to approximately
2.0%; for GE04, another 3.5% trial, but with a negative
future bias, the medium MSYR rises slightly initially but
levels off slightly above 2.5%; for the 5.5% trial GE10, the
median MSYR stays level at 2.5% and for the 1.5% trials,
GE16 and GE45 the median declines slightly to somewhere
between 2.0 and 2.5%. It is evident that the algorithm is not
particularly successful in picking up the true MSYR value. 

Bias filters
The observations in some of the trials are biased (see Table
1). We carried out some explorations into the possibility of
using filters with a bias, i.e. modifying the observation
equation (2) as follows:

where B is a possibly time-varying bias factor. We first
added filters with a time-increasing historical bias, as in
trials GE16 and GE45, but no future bias, thus using MSYR
values 1%, 2%, …, 6% with and without a historical bias
and thereby doubling the number of filters. This did not
improve the depletion results in the two aforementioned
trials, quite the contrary (in fact, median depletion went
down to 0.454 and 0.428 in GE16 and GE45 respectively),
the reason being that the bias filters with high MSYR values
end up with most of the posterior probability mass in 2002,
thus leading to higher future strike limits. Judging from the
posterior values, it would thus appear that the best fit to the
historical data with a simple density dependent model is for
(time-increasing) biased observations and high MSYR
values (median value 4.7% in 2002). We also looked at bias
filters with a future bias as in GE04; i.e. added filters with a
time-decreasing (1-0.5) and time-increasing (1-1.5) bias in
the first 25 years of management, thus tripling the number of
filters. This did not improve the results and will not be
discussed further here. Additionally the use of future biases
can be questioned since the possible scenarios are
innumerable and one might be tempted to imitate the trials
in order to improve performance. The conclusion is
therefore that the addition of bias filters to the present
version of the AKF-SLA is not a desirable option. 

DISCUSSION

The present AKF-SLA for the ENP stock of gray whales has
evolved from the version designed for the BCB stock of
bowhead whales (Dereksdóttir and Magnússon, 2003).
There are however a number of differences, of which the
most notable are summarised below.

(1) The bowhead whale version uses a grid in the (MSYR,
N
H

) parameter space, whereas the gray whale version
uses an (MSYR, MSY) grid for the reason given above
(i.e. the high negative correlation between MSYR and
N
H

).
(2) The filters in the bowhead whale version were started in

1848 since it was assumed that the stock was at carrying
capacity at that time. The variance associated with N

H

was set to zero since (MSYR, N
H

) are simply points in
the parameter grid which are given posterior probability
values by the Bayesian methods described above, as
abundance observations become available. The first
update is made in 1978, the year of the first bowhead

J. CETACEAN RES. MANAGE. 7(2):85–95, 2005 91



92 DEREKSDÓTTIR & MAGNÚSSON: APPLICATION OF A SLA TO N. PACIFIC GRAY WHALES

Fig. 5. Estimated and true stock trajectories from 1968 to 2100, along with observations for one simulation of trial GE45 are shown in the left column
for three different values of qt. In the column on the right the median, 5th and 95th percentiles for estimated MSYR are shown for the same three
values of qt. In figures (a) and (d) qt=0.01, (b) and (e) qt=0.001 and (c) and (f) qt=0.0001.



abundance estimate. In the gray whale SLA it is not
possible to start at a given year under the assumption
that the stock is in its pristine state at that time for
reasons given above. The first gray whale abundance
estimate is from 1968, but to avoid forcing all
trajectories through this estimate, the set of filters was
started somewhat earlier, i.e. in 1930. Instead of using
the 1930 population size as the starting value, the
population is normalised by the carrying capacity N

H
,

i.e. the 1930 population size N1930 is defined by a tuning
parameter a, where N1930 = aN

H
= a(MSY/(0.6MYSR))

with an associated CV, P0, which is also used as a tuning
parameter. The first update is made in 1968.

(3) The total number of filters in the bowhead whale
version is 917 (7 MSYR values: 1%, 1.5%, 2%,…,4%
and 131 values of N

H
(from 10,000 to 23,000 in

increments of 100). The number of filters in the gray
whale version is slightly higher, 1,044. This is mainly
due to the larger parameter range in the latter version.
Note that the MSYR grid is coarser for the gray whales.
This is mainly for computational reasons and the
relative smoothness of the cumulative distribution

function shown in Fig. 2 confirms that the grid is
sufficiently fine. 

(4) The estimated CVs in the abundance estimate, CVest,
provided to the SLA are used unchanged in the bowhead
version. However, the historical observations of the
abundance of gray whales with the provided CVs are not
compatible with a standard density dependent
population model. This CV is therefore likely to be an
underestimate of the true CV in the abundance estimate.
A constant CVadd is therefore added to all CV estimates
(historical and future) provided to the SLA. This value is
treated as a tuning parameter.

(5) The tuning in the bowhead SLA is two dimensional, the
two parameters being b, the steepness of the catch
control law, and g, the percentile in the cumulative
distribution function for the conditional strike limits.
The tuning of the gray whale SLA is more flexible, with
three additional tuning parameters (see the results
section). 

This list indicates how the AKF-SLA could be modified to
apply to other aboriginal type 2 fisheries, i.e. changing the
parameter grid, using different starting conditions for the set
of filters, changing the tuning parameters, etc. 

It is clear from Fig. 8 that the algorithm is not particularly
successful in obtaining an estimate of MSYR. There is little
difference between the MSYR estimates for GE01, GE10
and GE16, which are trials with MSYR, 3.5%, 5.5% and
1.5% respectively and the estimates change very little
during the management period. This is to some extent due to
the addition of CVadd but also due to the time-increasing bias
in GE04 and GE16. However, it would also appear (at least
by looking at one replicate in each of the trials GE16 and
GE45 and also confirmed in other replicates) that the
algorithm is tracking the true trajectory reasonably well and
responding to the observations, but not unduly because of
the (fairly) high value of CVadd (Fig. 3). 

In addition to the percentile g, a – the stock in 1930 as a
fraction of N

H
– is the parameter to which the trial results

are most sensitive (Fig. 4). The reason is that the estimate of
MSYR in 2003 decreases as a increases making the
algorithm more conservative. It is interesting however, that
depletion in trial GE16 and need satisfaction in trial GE04
both increase with increasing a. 

Other variants of the AKF-SLA were also investigated.
Firstly, a variant where N1930 is used as a tuning parameter
instead of a. Secondly, variants where N1930 (or a) is treated
as the third parameter in a 3-dimensional grid of filters
(MSYR,MSY, N1930). These changes did not lead to any
improvements on the trial results obtained by the version
described above.
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Fig. 6. The time evolution of the marginal probability distribution for
each group of MSYR filters from 1930 to 2002. 

Fig. 7. The posterior probability distribution for MSYR and MSY in 2002
at the beginning of management. The numbers in each column are the
probabilities of the six MSYR values.
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