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ABSTRACT

Reconstructing the historic trajectory of the eastern North Pacific gray whale (Eschrichtius robustus) isimportant for the understanding of
whale population dynamics and for management of the hunt on the population. Interestingly, the density-regulated BALEEN Il model
(Punt, 1999) will generally not reconstruct the trajectory because it does not reconcile catch history and abundance data unless additional
ad hoc hypotheses are added to the model. Here, an alternative model of inertial dynamicsisused to estimate the population trajectory over
the past 150 to 400 years. Thismodel isatraditional density-regulated model with superimposed density-dependent changesin theintrinsic
life history. Nine different versions of the model are examined and Bayesian assessments performed for the complete catch histories from
1600 and 1846. This reconciles the data, can explain an independent abundance estimate from 1885 and it predicts an over-compensatory
population that has increased steadily above the equilibrium abundance for the last three decades. The model predicts that gray whale
abundance will begin to decline in a more or less drastic manner in the near future.

KEYWORDS: GRAY WHALE; MODELLING; FISHERIES; INERTIAL DYNAMICS; DENSITY-REGULATION; NATURAL

SELECTION

INTRODUCTION

For the majority of species, including large whales, it has
been the consensus among population ecologists that
Malthusian (exponential) increase and density-dependent
regulation are the essential population dynamic mechanisms
intrinsic to populations. However, our understanding of
population dynamics is not given by consensus per se.
Instead it depends on plausible models that will reconstruct
the dynamics of natural species. For one of the best
documented whale populations — the eastern North Pacific
gray whale (Eschrichtius robustus) — it is well-known that
the hypothesis of density-regulated growth does not
reconcile the known historical catches with the recent
trajectory in abundance estimates (Cooke, 1986; Lankester
and Beddington, 1986; IWC, 1993; Butterworth et al.,
2002). When, as is customarily done in whale management
research, the historical catches are used to back-calculate
current abundance estimates to a pre-exploited population in
dynamic equilibrium, the estimated trajectory does not show
the observed increase that has occurred in the population
since the 1960s. To reconcile the density-regulation
hypothesis and the abundance estimates from 1968 to 1988,
the carrying capacity in 1988 needs to be at least twice that
in 1846, the commercial catches from 1846 to 1900 need to
be at least 2.5 times those accepted by IWC (1993) or the
annual aborigina catches prior to the commercial catches
need to be at least 3 times larger; these limits weaken if the
factors are considered in combination (Butterworth et al.,
2002).

Although the density-regulated model tends not to explain
the data, the coarse history of the three gray whale
popul ations have been reconstructed during the last decades.
The reason for the disappearance of the gray whale in the
North Atlantic (Mead and Mitchell, 1984) is unclear but
hunting may have been the cause; it certainly reduced the
North Pacific populations to very low numbers. Since the
halt of the commercial harvest, the western North Pecific
gray whale population has remained small (Weller et al.,
1999), while the eastern North Pacific (heresfter ‘eastern’)
population has increased substantially. For the eastern

population, which is the only population to be considered in
detail here, the historica catches apparently reduced a
population of 10,000-20,000 animals in the 1840s
(Lankester and Beddington, 1986) to an approximate
estimate of 160 whales in 1885 (Townsend, 1886). In the
early 20th century, the population was believed extinct
(Andrews, 1914), but in the 1930s migrating gray whales
were again commonly observed off California (Rice et al.,
1981). Some 20 surveys over the last 30 years have shown a
steady increase at 2.5% (SE=0.3%) per annum (Reilly,
1984; Buckland and Breiwick, 2002) while on average 155
whales were taken each year (Punt, 2001), predominately in
a local subsistence hunt along the Chukotka Peninsula. A
total of 26,600 whales (CV =10%) were estimated in
1997/98 (Hobbs and Rugh, 1999), and a combination of
recent mass mortality (Le Boeuf et al., 2000) and a decline
in more recent abundance estimates (Rugh et al., 2002)
indicate that the population might be close to carrying
capacity.

One possible reason for the lack of fit of the
density-regulated model could be that the gray whale has
cyclic population dynamics. Direct density-regulation
cannot explain the widespread tendency for cyclic dynamics
in natural species (Turchin, 1990; Witteman et al., 1990;
Turchin and Taylor, 1992; Ginzburg and Taneyhill, 1994).
However, delayed density-regulation can explain both cyclic
dynamics and the fact that delayed density-dependence is
documented in many species (e.g. Turchin, 1990; Turchin
and Taylor, 1992; Berryman, 1996). But delayed
density-regulation does not represent a redistic
single-species model; there is no strong theoretical basis to
explain how this mechanism would work within aspecies. In
this paper, the aternative single-species model of inertial
dynamics (Ginzburg, 1980; 1998; Ginzburg and Taneyhill,
1994; Witting, 1997; 2000; 2002a; c; Inchausti and
Ginzburg, 1998) is used to examine whether the gray whale
data can be explained by cyclic population dynamics.

Inertial dynamics resemble traditional density-regulated
model s with superimposed density-dependent changesin the
intrinsic life history. Such models may be compared with
older models of delayed density-regulation in the sense that
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both can explain the cyclic dynamics in many natural
species, and that both models include delayed
density-dependence, although the delay in inertia models is
restricted to one generation. However, where the delayed
density-dependence is given by assumption in the delayed
density-regulated models, the delay in the inertia models
arises from plausible natural selection-based mechanisms
that operate within the population. Another essential
difference is that the intrinsic growth rate is a parameter in
delayed, aswell as direct, density-regulated models, whileit
isan initial condition in inertia models.

To examine whether inertial dynamics can explain the
gray whale data the trajectories of the traditiona
density-regulated model are compared with the trajectories
of theinertiamodel for three different life histories. A larger
span of variation in the inertia model is also examined by
comparing different inertiamodel s with the gray whale data.
The inertia models covered include variation in life history
parameters (e.g. reproduction and survival), variation in
catch histories, variation in the sex ratio of the catches and
the population, and variation in the intrinsic life history
parameters that are allowed to change in time. All these
comparisons are made to a baseline model by changing one
component at a time comparing the abundance data to the
projections of the best fits of the different models. Finally, a
Bayesian assessment based on the inertia model and two
different catch historiesis presented.

METHOD

Population dynamics model

One of the more realistic density-regulated models for the
gray whaleisthe age- and sex-structured BALEEN |1 model
(Punt, 1999) that the IWC applies to baleen whales. A
discrete variant of the model may take the form:

Ny =ANf(N)=¢ @

where subscript t istime, N abundance, A theintrinsic growth
rate, f(N) the density-regulation function that declines
monotonically with N and c the catch.

Using density- and frequency-dependent game theory, it
has been shown (Witting, 1997; 2000; 2002a) that selection
by intra-specific density-dependent competitive interactions
can extend the density-regulated model of Equation (1)
into:

2’/+| = i/g(N,)
Ny =4Nf(N)-c,

@

where the selection response function g(N) monotonically
declineswith N, being one at equilibrium N* = g™(1). This
function reflects between generation changesin theintrinsic
life history as they arise from genotypic and epigenetic
responses to selection. A g function that is constant in time
reflects the simplistic case where the selection response at a
given abundance is time independent. Population models
like Equation (2) have also been deduced from epigenetic
maternal  effects independently of natural selection
(Ginzburg and Taneyhill, 1994; Ginzburg, 1998; Inchausti
and Ginzburg, 1998).

From Equation (2), the intrinsic growth rate A will
increase in populations below the equilibrium and declinein
populations above the equilibrium. The result is inertia
dynamics where, relative to traditional density-regulated
dynamics, the actual growth rate is being maintained when
the population approaches the population dynamic
equilibrium, generating cyclic dynamics in abundance, life

history and carrying capacity k,=f"™ (1/4,). These cycles
arise from selection processesintrinsic to the popul ation and
they may be damped, stable, or repelling with periods
ranging from two to an infinite number of generations. Since
Aand k areinitial conditionsin Equation (2) k will generally
differ from the equilibrium abundance N° unless the
population is in dynamic equilibrium.

An age-structured inertiamodel based on BALEEN Il was
developed by Witting (2002c). The present study isbased on
a dlightly modified version as described in the Appendix.
Thismodel can operate with density-regulation and selection
responses in the fecundity rate (b) and in the age of
reproductive maturity (a,).

Model comparisons

The inertia model used as a baseline case has life history
parameters that are close to the average of the generally
accepted priors for the eastern gray whale. To examine how
sensitive the fit of the inertia model is to the life history
parameters, themodel isalso applied for afast and aslow life
history that lie at the boundaries of the gray whale priors (fast
and slow refer to a faster and Slower turnover rate of
individualsin the population). Using the average, lower and
upper limits to the priors in Punt (2000), this gives adult
survival of S,y € {0.95, 0.97, 0.99}, an age of reproductive
maturity of a,, € {5, 7, 9}, and amaximal fecundity of by
€ {0.60, 0.45, 0.30} for respectively the fast, baseline and
slow life histories. For the baseline case, the rate of juvenile
survival  (§,) is estimated from a traditional
Pella=Tomlinson density-regulated model with no inertia
under the assumption that the maximum sustainable yield
(MSY) rateis0.05 and the MSY level is 0.6 (see Punt, 1999
and Appendix for detail). For the fast and slow life history,
juvenile survival is adjusted such that the ratio of juvenileto
adult surviva is similar to the ratio of the baseline model.
This gives the following survival estimates S, € {0.92,
0.94, 0.96}, and the following estimate of MSY rate €
{0.04, 0.05, 0.06} for the fast, basdline and dlow
Pella-Tomlinson models with no inertia.

To illustrate the difference between the fit of the
traditional density-regulated model and the inertia model,
trajectories are also calculated for the baseline, fast and slow
life histories for the PellaTomlinson density-regulated
model with no inertia. Together with the Appendix, for the
Pella=Tomlinson density-regulated model with no inertia,
the above mentioned parameters specify the complete
parameterisation of the life history leaving the equilibrium
abundance (N*) asthe only free parameter inthemodel. This
contraststo theinertiamodel sthat have four free parameters:
the strength of density-regulation (7); the level of selection
response (1), also referred to as the level of inertia; the level
of density-regulation and inertia in the age of reproductive
maturity relative to that of the fecundity rate («); and the
equilibrium abundance (N*).

The baseline catch history used includes the aboriginal
and commercial catches from the beginning of the
commercial harvest in 1846 (IWC, 2002), assuming a
post-1998 catch of 61 females and 61 males per year. To
reflect some of the uncertainty in the catch history, two
dternative catch histories were examined: the complete
catch history from the beginning of the aboriginal harvestin
1600 as estimated by IWC (1993), and the catch history from
1846 including only the commercial catches and the
post-1943 aboriginal catches.

The commercia harvest of gray whales reported more
females than males. For the complete catch history from
1846, including aboriginal catches with an assumed equal
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sex ratio, the fraction of femalesin the catch is 0.66. For the
baseline model, the sex ratio at birth is even and, thus, it is
assumed that the female biased catch reflects a
disproportionally large catch of females. To examine the
aternative where the sex ratio of the catch reflects the sex
ratio of the population, the case where the sex ratio in the
harvest is even assuming the same total number of catchesis
considered, and so is the case where the female fraction at
birth is 0.66.

In the baseline model, it is aso assumed that the
density-regulation and selection responses are restricted to
the fecundity rate, i.e. « is set to zero in Equations (15) and
(20). There are, nevertheless, plenty of reasons to believe
that such responses will operate on a much larger set of life
history parameters (e.g. Witting, 1997; 2002b). To reflect
this, the dynamics are also examined when there is an
additional density-regulation and selection response in the
age of reproductive maturity (a,), assuming that this
responseis half, or equal to, theresponseinb, i.e. « isset to
respectively 0.5 and 1.

To find an optima parameterisation for each of these
models, the models were fitted to the shore-based survey
estimates of the 1+ abundance from 1968 (the 1967/68
count) to 2002 (the 2001/02 count) obtained from IWC
(2002) and Rugh et al. (2002). This was carried out by
projecting the popul ation from a pre-expl oited abundance in
population dynamics equilibrium, and by using the method
of de la Mare (1986) to calculate the likelihood under the
assumption that the observation errors are log-normally
distributed (Buckland, 1992). This gives the likelihood

function:
b= Jew

where N°*S s an estimate of the 1+ abundance at timet, N, is
the 1+ abundance of the model projection at timet, and cv; is
the coefficient of variation of the abundance estimate at time
t.

To find an optima  parameterisation, the
three-dimensional parameter space of 1, y and N* was
searched. The level of inertia was searched by 0.1 steps
within the range 0 = 1 < 5, that cover dynamics from a
traditional density-regulated model with no inertia (1 =0),
over inertia models with damped cyclic dynamics (0 < 1 <
= 3-4), to inertia models with unstable dynamics (= 3-5 <
1). Trajectories that cycle too fast were discarded during the
search. For the trajectories that are initiated in 1846, the
following were discarded: (1) al trajectories that before
2005 crossthe equilibrium abundancein an upward direction
more than once; and (2) al the trajectories that cross the
equilibrium abundance in the downward direction, except
for the initial decline starting in 1846. For the trajectories
that were initiated in 1600, the trajectories that before 2005
cross the equilibrium abundance in an upward direction
more than twice and all the trgectories that cross the
equilibrium abundance in the downward direction more than
once were discarded. This alows for one full population
cycleinthe 1846 to 2005 trajectories, and for two full cycles
in the 1600 to 2005 trajectories.

For each 0.1 step within the inertiarange 0 = v < 5, 60
steps were used to search the y parameter over one order of
magnitude around the values that an initial and more crude
search hasindicated to contain the optimal parameterisation.
For each \ - y combination, all N* within the range 7,000 <
N* < 22.000 that will hit the point estimate of the abundance
in 1977 were found. Among these, al the parameterisations

obs
M) ev, ?)

that lead to dynamics with too fast cycles were discarded, as
described above. From the remaining hits, the hit with the
highest likelihood was optimised by Brent’s method (Brent,
1973) for y and N* in order to find a local optimum in the
likelihood function. The best estimate was then the
parameterisation with the highest likelihood chosen among
these potentially 3,060 different local optima. This routine
will not necessarily find the global likelihood optimum but it
islikely to find a parameterisation that is close to the global
optimum.

Bayesian assessment

A Bayesian method was used to estimate the parameters of
theinertiamodel for two cases with adensity-regulation and
selection response in the fecundity rate only, aboriginal and
commercial catches starting from 1600 and 1846
respectively, and an even sex ratio in age-class zero. The
technical method resembles that of Wade (2002), where the
sampling-resampling routine of Rubin (1988) was used to
estimate the posterior distribution. Initially, n; random
parameterisations 6 (1 < i < n,), with dynamicsthat contain
no more than one (two) full cycle(s) in the period from 1846
(1600) to 2005, were sampled from the joint prior
distribution (Table 1). For each set the population was
projected from the pre-exploited equilibrium until 2005 and
the likelihood L(6) was calculated. The n; parameter sets
were then re-sampled n, times with replacement, with the
sampling probability of the ith parameter set being:

L))
S TR (4
ZAFI L(el)

This will generate a random sample of the posterior
distribution of size n,. The sample of the posterior
distribution was set to n, = 5,000, and the initial sampling to
n, > 2,000,000 in order to produce a smooth posterior
distribution.

Table 1

The prior distributions: b, is the maximal fecundity rate; a,, the age of
reproductive maturity; S,; adult survival; S, juvenile survival;  the level
of inertia; y the strength of density-regulation; N* the equilibrium
abundance; and cv,, the additional variance in the abundance estimates,
given as a coefficient of variation. The 1600 and 1846 in parentheses
indicate distributions that apply only to the catch histories from 1600 and
1846 respectively. U indicates a uniform distribution, and DU a discrete
uniform distribution.

Parameter Dist. Min. Max.
biax (1600) U 0.20 0.60
bnax (1848) U 0.30 0.60

[ DU 5 9

Sad U 0.95 1.00
Siuw U 0.80 0.99

1 U 0.00 5.00

y (1600) U 0.000005 0.0001
y (1846) U 0.00001 0.00050
N* U 10,000 20,000
CVad U 0.00 0.35

Generdly the priors (Table 1) resemble those of Wade
(2002) and Punt et al. (2002) except for the equilibrium
abundance that is restricted to much lower valuesin Table 1.
This is because a large equilibrium abundance has virtually
no likelihood in the inertia mode and, thus, the restricted
range was chosen to make the sampling-resampling routine
more efficient. Another difference is the maximal birth rate
that has a minimum value of 0.2 for the inertia model with
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catches starting in 1600, while the minimum is 0.3 in Wade
(2002) and Punt et al. (2002). This is because an initia
estimate indicated an estimate very close to 0.3.

Like Wade (2002), an additional variance term was used.
Theadditional variance was parameterised as a coefficient of
variation (cvy), considered to be constant across years and
incorporated into the likelihood function in each year as an
additive variance term to the abundance estimate assuming
that the additional variance has a Gaussian distribution.
Hence, in each year, the cv; of Equation (3) is given as:

CVp = CVr%,t + CV; )

where cv,,; is the coefficient of variation of the abundance
estimate in year t.

RESULTS

Model comparisons

The parameters and relative likelihood of the best fitting
inertia models and the three Pella-Tomlinson modelsthat hit
the 1977 abundance are given in Table 2, together with four
management-related quantities; the trgectories of the
different projections are shown in Fig. la-e.

Like in other studies (e.g. Butterworth et al., 2002), the
traditional density-regulated models (Fig. 1a) fail to explain
the increase in the abundance estimates from 1968, and nor
are they consistent with a depleted popul ation around 1900,
as indicated in the figure by the abundance estimate of 160
whales in 1885 (Townsend, 1886). This contrasts to the
inertiamodels (Fig. 1b-€) that all explain both theincreasein
the abundance estimates from 1968 and the depleted
population around 1900, although only two of the models
indicate depletions to the level of 160 whales. All inertia
models predict that the current abundance is much larger
than the equilibrium abundance, and that the popul ation will
begin a more or less drastic decline in the near future
(average year of initial decline 2019, ranging from 1999 to
2046).

The three Pella-Tomlinson models with no inertia (Fig.
18) have almost zero likelihood compared with the inertia
models. Among the inertia models it is especidly the
trgjectories of the dow life history, the commercial catch
series from 1846, and the total catch series from 1600 that
have the highest relative likelihood. By comparing the

differences in the relative likelihood with the trajectories of
the inertia models, it can be seen that the largest fraction of
the differences in the relative likelihood is caused by the fit
to the high abundance estimates from 1994 to 1998 and the
low estimates for 2001 and 2002. None of the inertiamodels
are able to capture the drastic change in the abundance
estimates between these two periods, and the differencesin
therelative likelihood isto alarge degree due to the way that
the traj ectories compromise between the estimates of the two
periods.

Nearly all the inertiamodels give comparabl e estimates of
the historical trgjectories, including comparable fits to the
data (except 1994-2002), with the largest differences being
in the projections from 2000 to 2100. For the three life
history models — basdline, fast and slow (Fig. 1b) — the
historical trgjectories are very similar, while the future
trgjectories show some differencesin thetiming and level of
the peak abundance, and in the subsequent population
decline. All three models show slow declines with the
population being above the equilibrium abundance in 2100,
with the peak abundance being progressively later and
higher in the slow, baseline and fast life history models.

A larger difference is induced by the different catch
histories (Fig. 1€). Again the historical trajectories are very
similar, but compared with the baseline model, both the
catch history from 1600 and the commercia catches from
1846 induce a much more drastic decline in abundance after
year 2000. The inclusion of inertiaand density-regulation in
the age of maturity (Fig. 1¢) has the opposite effect, with the
abundance continuing to increase at a very slow rate until
2040-45. Again there are only minor differences in the
historical trgjectories. The models where the sex ratio of the
catch reflects the sex ratio of the population (Fig. 1d),
however, induce a clear decline in the historical trajectories
so that they are comparable with the historical abundance
estimate of 160 whalesin 1885. For these models, the model
with an even sex ratio in the catch induces a more drastic
decline in the abundance after year 2000, while the model
with a female-biased sex ratio in the newborns produce a
future trgjectory that is comparable with the trgjectory of the
baseline model.

For the management related quantitiesin Table 2 we find
that nearly all models estimate a population close to the
current carrying capacity. However, for the inertia models
with a dynamic carrying capacity, it may be more helpful to

Table 2

The three Pella-Tomlinson models with no inertia (z = 0) that hit the point estimate of the 1977 abundance,
and the best fits of the inertia models (z > 0). 1 is the level of inertia; y the strength of density-regulation; N*
the equilibrium abundance; and ¢ % the relative likelihood in percent, as estimated by Equation (4) when
summed over the best fits of the 12 different models. N/N* is the depletion ration in 2002 relative to the
equilibrium abundance N* NyK, the depletion ration in 2002 relative to the carrying capacity K in that year,
and Y, and Y, are the production of whales in the population in the years 2002 and 2012 respectively.

Model 1 Y N* q% Nz/N* NZ/KZ YZ Y/g
Baseline 0.0 - 16,680 0.0 0.95 0.95 122 126
Fast 0.0 - 16,520 0.0 0.96 0.96 121 128
Sow 00 - 16930 00 093 . 093 121 ____ 124

Baseline 0.2 0.000096 14,670 2.2 1.66 0.86 247 167
Fast 0.2 0.000045 15,730 0.7 1.67 0.78 359 237
Slow 34  0.000154 14,540 50.7 1.57 1.00 146 94

Commercial catches 2.2 0.000066 10,880 15.1 2.03 1.17 42 41
Catches from 1600 1.8 0.000068 10,800 15.2 2.07 1.09 62 -25
Even sex ration in catch 1.4 0.000058 8,390 9.2 2.70 1.06 99 -1

Birth female biased 0.3 0.000082 11,510 3.9 2.07 0.88 226 143
Rep. Maturity o.= 0.5 0.2 0.000056 15,760 2.8 1.60 0.74 333 259
Rep. Maturity o.= 1.0 0.3 0.000037 16,560 0.2 1.58 0.61 382 302
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Fig. 1. Comparing gray whale data to models. The diamonds are the point estimates of abundance, and the curves the trajectories of different models.
These modelsare: (a) the Pella-Tomlinson density-regulated model with noinertia, for the baseline, fast and slow life histories under the assumption
that the trgjectories hit the 1977 abundance estimate; (b) the best fits of theinertiamodel for the baseline, fast and slow life histories; (c) the baseline
and two levels of inertiaand density-regulation in the age of reproductive maturity; (d) the baseline, the case with afemale biased sex ratio at birth,
and an even sex ratio in the catch; and (€) the baseline, the commercial catch history from 1846, and the complete catch history from 1600. All inertia
models are fitted to the abundance estimates from 1968 to 2002, and the 1885 estimate is included only for comparison.

define the depletion ratio relative to the equilibrium
abundance, where the current population size is 1.6 to 2.7
times the equilibrium abundance.

The production of the population in 2002 is estimated to
be 120 whales per year for the Pella-Tomlinson models with
no inertia, with aslight increase between 2002 and 2012. For
the inertia models, the production in 2002 varies between 42
and 380 whales per year, with all models predicting adecline
between 2002 and 2012. On average, the decline in the
yearly production between 2002 and 2012 is 85 whales, with
the range for the best fits of the different models being a
decline between 52 and 120 whales.

Bayesian assessment

The parameter estimates, management quantities and
correlation matrices of the Bayesian assessments for the
catch historiesfrom 1846 and 1600 are given in Tables 3 and
4 respectively. The median and the 95% credibility intervals
(CI) of the posterior distribution of population abundance are
shown in Fig. 2a-b, and the corresponding values are shown
in Fig. 3a-b for the posterior distribution of the yearly
production in the population.

In general, both catch histories give similar parameter
estimates, not only for thelife histories but more surprisingly
also for the equilibrium abundance that is estimated to
15,200 (Cl: 13,600-18,900) and 14,600 (CI: 11,200-19,600)
for the catch histories starting in 1846 and 1600 respectively.
For all parameters, it isthe catch history from 1846 that gives
the smallest CI. For the posterior distribution of abundance
(Fig. 2) and production (Fig. 3) it is generally the historical
estimates from 1850 to 2000 that have the smallest Cls,
while the projection into the future and the historical
estimates prior to 1850 are less accurate.

The estimates of both catch histories suggest that the
abundance in 2002 is 1.5-1.7 times the equilibrium
abundance (ClI: 1.23-1.61) for the 1846 catch history.
Whereas the estimates of the 1846 catch history suggest that
the 2002 abundance is 0.85 (Cl: 0.46-1.75) times the
carrying capacity in that year, the 1600 catch history
suggests that the 2002 abundance is only 0.68 (ClI:
0.21-0.89) times the 2002 carrying capacity. This difference
is aso reflected in the production levels. Although both
models suggest that the yearly production between 2002 and
2012 will decline by approximately 100 whales, the 1600
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Table 3

Parameter estimates for the 1846 catch history. Estimates of parameters and
four management-related quantities, together with the parameter correlation
matrix. The point estimates are given as the posterior mode and medians,
followed by the 95% credibility interval.

Parameter estimates

Mode Median 2.5m 97.5"
binax 0.31 0.40 0.31 0.56
A 6 7 5 9
Sad 0.97 0.96 0.95 0.99
Siuw 0.88 0.89 0.80 0.95
1 2.88 1.02 0.27 5.00
y 0.000059 0.000059 0.000022 0.000136
N* 15,200 15,200 13,600 18,900
e 009 014 009 020
N/N* 1.51 1.23 1.61
N/K, 0.85 0.46 1.75
Y, 195 -36 558
Y 117 -116 449
Correlation matrix
bax an Sud S 1 y N* CVad
bma.\‘ 100 - - - - - - -
ap 0.07 1.00 - - - - - -
Sad 0.12  -0.14 1.00 - - - - -
Sjuv -0.33 0.41 0.13 1.00 - - - -
1 -0.19 0.28 -0.14 0.24 1.00 - - -
y 0.19 0.05 032 -0.01 -0.27 1.00 - -
N* 0.17 -0.18 0.38 -0.08 -0.23 -0.50 1.00 -
CVad 0.23 0.08 -0.12 -0.06 -0.30 0.15 0.03 1.00
Table 4

Parameter estimates for the 1600 catch history. For detail see Table 3.

Parameter estimates

Mode Median 2.5 97.5™
bpax 0.53 0.38 0.21 0.55
ap 9 8 5 9
Sad 0.96 0.97 0.95 0.99
Siuww 0.83 0.86 0.80 0.95
1 1.08 1.08 0.09 4.90
y 0.000050 0.000050 0.000009 0.000092
N* 14,000 14,600 11,200 19,600

CVad ] 0.13 .. 013 ________. 001 __________ 0.34
Ny/N* 1.67 1.13 1.93
N/K, 0.68 0.21 0.89
Y, 337 116 739
Y, 218 19 717
Correlation matrix
binax an Sad Siuv 1 Y N* CVad

buee  1.00 - - - - - - -
an 0.06 1.00 - - - - - -
Sad -0.48  -0.04 1.00 - - - - -
Siuw -0.30  -0.11 0.06 1.00 - - - -
1 -0.27  -0.19 0.48 0.10 1.00 - - -
y 0.13 0.17 -0.00 -0.20 -0.69 1.00 - -
N* -0.30 -0.05 0.22 0.02 0.31 -0.47  1.00 -
CVad -0.12 0.11 0.04 0.04 022 -032 021 1.00

catch history givesayearly production of 337 (Cl: 116-739)
whales in 2002, while the corresponding production for the
1846 catch history is 195 (Cl: —36-558) whales. Seen over
the longer time span of Fig. 3a-b, the models estimate large
cycles in the production level. For the 1846 catch history,
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Fig. 2. Comparing gray whale data to Bayesian assessments. The solid
curves are the medians and the dashed curves the 95% credibility
intervals of the posterior abundance distribution for the complete
catch histories from (a) 1846 and (b) 1600. The diamonds are the
point estimates of abundance, with the model fitted to the estimates
from 1968 to 2002, and the 1885 estimate included only for
comparison.

e.g. there is a peak in the yearly production of 596 (Cl:
406-683) whales in 1975, and a predicted minimum of —13
(Cl: =174-214) whales in 2030.

DISCUSSION

Theinertiamodel is better than traditional density-regulated
models in reconciling the catch history and the abundance
data of the eastern North Pacific gray whale. Except for the
recent declinein the abundance estimates for 2001 and 2002,
the inertiamodel is generally consistent with the data, while
a successful fit of the density-regulated model depends on
the inclusion of ad hoc hypotheses, e.g. that the carrying
capacity in 1988 is at least 2.5 times the capacity in 1846
(Butterworth et al., 2002). While such an increase is
potentially possible, the density-regulation hypothesis
provides no mechanismto explainit. A mechanismisinstead
provided by the inertia model that predicts that selection
induced changes in the intrinsic growth rate implies that the
carrying capacity in 1988 is 1.9 (Cl: 1.6-3.2) times the
capacity in 1846 or 2.5 (Cl: 1.6-6.4) times the capacity in
1600.

Other factorsthat may enable the density-regulated model
to fit the estimates of gray whale abundance are commercial
catches that are 2.5 times the catches documented by the
IWC (1993) for the period 1846-1900, or aboriginal catches
prior to 1846 that are three times larger than the current
estimates. Although ‘the overall data set was the best
available', IWC (1993) ‘ noted that the estimated commercial
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Fig. 3. The yearly production of whales in the eastern North Pacific
gray whale population, as estimated by the Bayesian assessment for
the complete catch histories from (a) 1846 and (b) 1600. The solid
curves are the medians and the dashed curves the 95% credibility
intervals.

catches may be underestimates to an unknown degree and
possibly up to 1.5 times'. Obtaining estimates for early
aboriginal catches is extremely difficult.

The different versions of the inertia model are
approximately equally efficient in explaining the data. The
major differences between the trajectories of the different
models lie in the projections into the future, where some
models have a faster and deeper decline in the abundance
than other models. The historical trgjectories, on the other
hand, are generaly very similar between the different
models suggesting that the abundance in historical time is
rather accurately estimated should the gray whale population
be driven by inertial dynamics.

It could be argued that the inertia model is too robust
because the different models are approximately equally
efficient in explaining the data despite the fact that only one
model can be the true model. Thismay, however, reflect that
the cyclic dynamics of the inertia model are comparable to
those of the gray whale, and that the three free parameters by
which the model is fitted to the data allow for sufficient
flexibility in the dynamics despite the differences in model
structure and catch histories. The indication that the gray
whale may have cyclic dynamicsis also compatible with the
fact that the traditional density-regulated models with a
monotonic return to equilibrium cannot easily fit the data
unless additional ad hoc factors are added to the models.

If the dynamics of the gray whaleistruly cyclic it does not
necessarily imply that the underlying mechanism is that of
inertial dynamics. The dynamics might instead be driven by
other factors that can induce delayed density-dependence,
with the most obvious alternative being predator-prey
interactions. The essential predator-prey interaction may, at
least in principle, be both with the prey or predators of the
gray whale. However, asthe delay in the density-dependence

more probably needs to be comparable with the generation
time of the gray whale before the estimated cycleswill arise,
the essential interaction may unlikely be with gray whale
prey. Of other explanations, interactions with the killer
whale (Orcinus orca) is the main potential predator.

Therecent high mortality in the gray whale population (Le
Boeuf et al., 2000; Pérez-Cortés et al., 2000) and the abrupt
decline between the abundance estimates of 1994-98 and
2001-02 may indicate that the population is about to
experience a mgjor decline in abundance, although IWC
(2002) suggests lower mortality and healthier animals in
2001. While the traditional density-regulated model will not
be able to explain such a decline without additional ad hoc
hypotheses such as decline in carrying capacity, the inertia
model predicts that a decline in abundance and carrying
capacity is about to occur. However, even the decline in the
fastest declining inertia model cannot keep up with the
decline in the recent abundance estimates. There may be
severa reasons for this. The abundance estimates for 2001
and 2002 might be negatively biased, they might betheresult
of a ‘catastrophic’ event that generated the recent mass
mortality independently of the mechanisms that usually
drive the gray whale dynamics, the gray whale may not have
inertial dynamics, or the gray whale may have inertial
dynamics while the models investigated here do not fully
capture the dynamics of the species.

At present, there is no particular reason to expect that the
two abundance estimates of 2001 and 2002 are negatively
biased compared with the earlier estimates (Rugh et al.,
2002). The recent high mortality, which seemsto be alikely
cause for arecent decline, might have been caused by some
catastrophic event, but it might also be a reflection of more
general population dynamics mechanisms that operate at
peak densities in species with cyclic dynamics. Such
mechanisms may include increased sensitivitiesto infections
by parasites due to high densities and/or malnourished
individuals. But, the mechanisms may aso be more directly
linked to acause of cyclic dynamics. For example, theinertia
models investigated in this paper are all based on the
assumption that the within population biasin the distribution
of resource between individuals is a linear function of the
population density, which for most cases imply that the
competitive game that distributes the resource among the
individuals is assumed to be the same over all population
densities; this may not be the case. The competitive games
areto alarge degree determined by the strongest individuals
and if a high population densities these individuas
experience a shortage in the availability of resource it is
likely that they will change the game in their favour so that
they will dominate the access to the resource even more than
they do at lower densities with less resource shortage. If this
is the case, one can expect density-dependent transitions in
the competitive game with the resource becoming
increasingly monopolised at the highest densities at the cost
of the competitively inferior, or even the magjority of,
individuals in the population. In such cases, one would
generally expect a population decline that is faster than for
the models presented here, where the cycles are symmetrical
in the sense that the declining phase of the cycle is
comparable with the increasing phase.

The Standing Working Group on the Development of an
Aborigina Subsistence Whaling Management Procedure
(AWMP) is presently developing a Srike Limit Algorithm
(SLA) for the eastern North Pacific gray whale (seee.g. IWC,
2002). This is done in a simulation framework where
candidates S_As are tested over anumber of trias, with each
trial representing inter alia a different hypothesis on the
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population dynamics of gray whales. Although at present a
few of thetrials are based on inertial dynamics, the mgjority
arevariants of the density-regulated hypothesis that does not
reconcile the historical catches and the recent abundance
estimates. This problem is circumvented in the trias by
discarding the majority of the historical catches and
initiating the trialsin 1930 assuming that the age-structureis
stable and that the population is not in dynamic equilibrium
at that time. While this allows for a good fit of the
density-regulated hypothesis to the estimates of gray whale
abundance, it does not allow for trials with cyclic dynamics,
nor doesit explain the discrepancy between the data and the
model.

With the abundance estimates and catch histories being
consistent with cyclic population dynamicsit would seem to
be a wise strategy if candidate S_As were tested firmly
against the hypothesis of cyclic dynamics, particularly asthe
abundance data indicates a decline that is faster than the
decline of the fastest declining inertia model applied in this
paper. It could be argued that an accepted SLA for the eastern
gray whale must be able to cope even with a crashing gray
whale population. Unfortunately, such SLAs would
necessarily, at least to some degree, compromise the number
of alowable strikes if the gray whale would stabilise at
approximately the current abundance, as assumed by most of
the density-regulated trials. This trade-off is probably
unavoidable if the objective is to develop an SLA that will
work also for the apparently likely scenario where the gray
whale abundance is declining.

The development of an SLA designed also for cyclic
dynamics might be a somewhat tedious process. Both the
management objectives of the IWC and the framework used
to evaluate candidate S_As have been developed only for
traditional  density-regulated  dynamics.  Traditiona
management objectives are often defined relative to the
MSY and the MSY level, which are concepts that apply only
to cases where the intrinsic growth rate is constant. For
inertial dynamics, the intrinsic growth rate is an initial
condition so that most popul ation abundances are associated
with asuite of both positive and negative realised population
dynamic growth rates. Among other things, thisimplies that
there is no single curve of sustainable yields and, thus, no
well-defined harvest optimum as assumed by the IWC.
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Appendix
ABUNDANCE DYNAMICS

Let age- and sex-structure resemble the BALEEN |1 model
(Punt, 1999), where the dynamics in the number of animals
in age classes larger than zero is:

R = (R =Cli NS, + UL 8,80 0<a<x-2
R = (RIS =GN, 4RI = C)s, 1 ©)
Ur"li {1+1 = U,'"(I/-/.Sa(] - 5a+l) 0<a< x-2

where RTY *is the number of recruited males/females of age
a at the start of year t, U " is the number of unrecruited
males/females of agea at the start of year t, 8, isthefraction
of unrecruited animals of age a-1 which recruit at age a
(assumed to be independent of sex), C%/ f is the catch of
males/females of age a during year t (whaling is assumed to
take placein apulse at the start of each year), S, isthe annual
survival rate of animals of age a:

%uvsadult ifa=0
S = quv if 1Sa<agy (7)
Sodult ifa> T

where §,, is the survival rate for ‘juveniles, Sy,.is the
survival rate for adults, a,qy; isthe greatest age at which the
‘juvenile’ survival rate applies, and x is the maximum
(lumped) age-class (all animals in this and the x-1 class are
to be recruited and to have reached the age of reproductive
maturity). In this paper agy =0and 6, = 1fora= 1.
The number of births at the start of year t+1, Bi+1, is:.

B = Z Br+|,a (8)

u_anl‘lll\ﬂ

where a,min 1S the potential lower limit to the age of
reproductive maturity a.,, and By, 5, the number of birthsin
ageclassa, is:

B

t+l,a

= bl+l,aNi£I,a (9)
where b , isthe fecundlty rate for mature females (at time t
in age class a), and N{ , is the number of mature femalesin

age class a at the start of year t, defined as:

N =

t,a

0 ifana>a
Rfa + Utfa ifapa<a (10)

where an:, iS the age of reproductive maturity for
individuals in age class a at time t.

Density-regulation
Let N be the component of the population that imposes
density-regulation, and let it be the one plus component

N:ZU{+U§’+R{+R§’ (11)

a=1

L et density-regulation operate on the fecundity rate b and on
the age of reproductive maturity a,,, with:

ﬂ/+1,a = ﬂz,r+l,a.fﬂ(/<//+l) (12)

where B=b and = a,, respectively, 3,14 is the intrinsic
parameter b, or a,, in age class a at time t+1, and the
density-regulation function f (N ) ismonotonically declining
with N, for §=b and monotomcally increasing with Nt for
B=a. Both density-regulation functions f, and f,_, take the
age specific limits:

ﬂmin/ﬂzta—fﬂ(N)<ﬂmax/ﬂ1ta (13)

where Brin € {Brin, @mmint 1S the lower and Brax € { Brax,
ammax the upper limits for b and a,. At the population
dynamic equilibrium (N*), the density-regulation functions
take the value of one [f3(N*) = 1], the age-structureis stable,
the realised parameters are identica to the intrinsic
parameters (B, = B ) being the same over all age classes.

For the traditional density-regulated model with no inertia
and density-regulation operating only on the fecundity rate
b, let the density-regulation function take the
Pella-Tomlinson form:

S(Npy)=max (1+A[1—(N,,,/ N*)°1,0) (14)
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where A = (b, —*)/b* because thereisno age structurein
the fecundity rate of mature females. Then, as b* can be
estimated from age structured survival (S,), and asthe MSY
rate and the MSY level isgiven by S,, b*, A and z, provided
estimates/assumptions of MSY rate, MSY level and Sy it
is possible to calculate §,y.

For density-regulation in the inertia models the
exponential Ricker functions are used:

fh(NHl) = eiy(NMiN*)

. - (15
fam(NHLl) = eay(NH] 7N*)
to avoid that fg(N) = 0 for abundances above the population
dynamic equilibrium N* and to avoid that fg(N) is
discontinuous at N* (y and oy define the strength of the
density-regulation functions f, and f,, respectively).

Life history dynamics

Let the intrinsic life history parameters b, and a,,; be stable
during the lifespan of the individual, and let the average
intrinsic component of a cohort be stable as the individuals
of the cohort is dying. Hence, for 0 = a = x -2:

b b

Li+la+l = “ita

16
am,l.l+|.a+1 = am.l,l,a ( )

Let the intrinsic components of age class x be the weighted
average of the cohorts within this class:

ﬂz,l,x(N/'c( - lex)Sx + /Bz,l,x—l(N/{;(—l - C/{;(—I)Sx—l
(Nl{x - Ci,/x )Sx + (Ni,/x—l - Ci,/x—l )Sx—l

ﬂl,H—l,x = (17)

where B=b and = a,, respectively.

Let the intrinsic components of new-borns be the
components of the parents multiplied by adensity-dependent
selection response gg(N), so that the average intrinsic
components of a new-born cohort is:

2~ X
8p (Vs )Z ama ﬁ(,Hl,a B/+1,a

m.min ( 18)
Bt +1

1i+1,0 =

with §=b and B =a,, and where B; is given by Equation 8,
Bi o by Equation 9, and the selection response functions
gs(Ny) are positive, monotonically declining with N; for
B=Db, and monotonically increasing with N, for S=ay,
taking the value of one at equilibrium [gg(N*) = 1]

Let the intrinsic parameters be constrained between a
lower (bt,min and am,t,min) and an upper (btmax and am,t,max)
limit. Let the upper intrinsic limits be estimated from the
upper limits of the actual parameters (Dyy and am, max) and a
maximal abundance (Na) above which the population
cannot reproduce at the maximal rate. Likewise, let thelower
intrinsic limit be estimated from the lower limit on the actual
parameters (byinand ammin) and a minimum abundance
(Npin) below which the population cannot reproduce at the
minimum rate. Hence, the intrinsic parameters are
constrained within:

bmin /ﬂ(N|ni|1) = bl = bmax /ﬁJ(Nmax)
A, min /fam (Nmin) < Ay < A, max /fam (Nmax)

In this paper it is assumed that by, = 0 and that Npyin = Niax
= N*, while the remaining limits bax, 8mmin 8Nd 8 max &€
given by the parameterisation of the model.

Let the selection response functions be comparable with
the density-regulation functions, and defined as:
~i8(Npy=N*)

(19)

&N =e

8a, (]\A[Hl) = em{)‘(l\}m - (20)
where the 1 parameter scales g relative to fg. Thus, the
inertia model reduces into a traditional density-regulated
model with no inertia at the limit 1=0.
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