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ABSTRACT

Bayesian methods using mtDNA data are developed to compare single- and multiple-stock hypotheses. The likelihood of the data is
assumed to be multinomial and the multivariate prior for the probability of an individual having a particular haplotype is assumed to be
of the Dirichlet-b form. The values for the parameters of this prior are either determined using an Empirical Bayes approach or assumed
to be distributed according to a log-normal hyper-prior (the ‘Full Bayes’ approach). The Empirical and Full Bayes methods are examined
using simulation. The performance of the Empirical Bayes method is found to be much worse than that of the Full Bayes method. Illustrative
comparisons for North Pacific minke whales based on the latter method confirm previous results that sub-areas 6 and 7 contain different
stocks. Results of the application of this method to the mtDNA data for the sub-areas to the east of Japan, although generally uninformative,
are nevertheless consistent with analyses based on hypothesis testing using allozymes and mtDNA. The results from this method should,
however, be used for management purposes with some caution. This is because, although some testing of the Full Bayes method has been
completed and suggests that when applied to data for two stocks that differ substantially in haplotype frequency, or when sample sizes are
large and there is only one stock, performance is adequate, in common with most other methods for analysing genetics data, its performance
has yet to be fully evaluated.

KEYWORDS: BAYES; GENETICS; STOCK IDENTITY; NORTHERN HEMISPHERE; NORTH PACIFIC OCEAN; MINKE
WHALE

INTRODUCTION

One of the key uncertainties identified during the
development of the Revised Management Procedure (RMP)
for baleen whales was that of uncertainty regarding stock
structure (IWC, 1992; Hall and Donovan, 2001). Fig. 1
illustrates the problem generically. Areas A and B are areas
covered during abundance surveys while all of the historical
catch is taken from Area A. The future intention of the
fishery is to operate in Area A (which may, for example, be
the closest to port). The catch limit for Area A can be based
either on (1) the survey and catch data for Area A only, or (2)
on the survey and catch data for both Areas combined.

Option (1) is appropriate if separate stocks1 are found in
Areas A and B, whilst option (2) is appropriate if there is
only a single stock. If the catch limit is based on data for Area
A only and there is in fact a single stock, the resource will be
underutilised. Conversely, if it is based on the data for both
Areas when Area A contains a separate stock from Area B,
overexploitation will occur in Area A. The RMP can
overcome some of the problems associated with uncertainty
about stock structure through its catch capping and catch
cascading options (IWC, 1994), but will yield improved
performance (better catches for the same perceived risk) if
some of this uncertainty can be resolved.

One of the most common recent approaches to attempt to
resolve stock structure questions is collection and analysis of
genetics data (e.g. see IWC, 1991; Dizon et al., 1997).
Traditionally, this has been examined using classical
(frequentist) statistical methods based on the null hypothesis
of panmixia. This classical approach is based on
well-established statistical techniques (e.g. Excoffier et al.,
1992; Hudson et al., 1992). Statistics related both to
haplotypes (based on the haplotype frequencies only) and to
sequencing (based on haplotype frequencies and genetic
distances among haplotypes) are used. These techniques
provide clear guidance regarding the most appropriate stock

1 For simplicity, this paper discusses stock differentiation issues in the
context of the existence of a stock boundary which exactly and
completely separates stocks. In reality, of course, there will be a region
of overlap, and any boundary line specified would constitute a trade-off
choice which attempts to minimise the proportions of each stock likely
to be present on each’s ‘other’ side of that line.

Fig. 1. The generic one-stock / two-stock problem. The historical (and
future) catches are taken from Area A and surveys cover both Areas
A and B. It is uncertain whether Areas A and B contain one or two
stocks (and in the latter case in a manner that their relative
proportions in Areas A and B differ appreciably).
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structure hypothesis if a statistically significant result is
obtained. However, the implications of a non-significant
result are unclear. This is because a non-significant result
can arise either because there is only a single stock in the area
from which the data were collected, or because there is stock
structure in the area but the sample size is too small to detect
this. Furthermore, a non-significant result could also arise if
there are really two stocks but the boundary between the
strata chosen for data analysis does not correspond to that
between the stocks.

In principle, the use of Bayesian techniques can overcome
these problems. The outcome of a Bayesian comparison of
single- and two-stock hypotheses (models) is the posterior
odds ratio (Jeffreys, 1961; Kass and Raftery, 1995). The
posterior odds ratio is the ratio of the relative probability of
the one- to the two-stock hypothesis. Thus, a very large value
will indicate preference for the one-stock hypothesis, a value
close to zero preference for the two-stock hypothesis, and a
value close to unity preference for neither hypothesis. The
posterior odds ratio is the product of the prior odds ratio and
the Bayes Factor. For the illustrative calculations of this
paper, the prior odds ratio is assumed to be unity (i.e. the
one- and two-stock hypotheses are equally likely a priori) so
the posterior odds ratio is equal to the Bayes Factor.

Use of Bayesian methods is perhaps preferable to the use
of classical statistical methods in any case. This is because
they provide the (relative) probability of alternative
hypotheses rather than simply the ability to reject one of the
two models at some pre-specified level of type I error.
Determining the relative probability of alternative
hypotheses is preferable because it avoids the need for the
specification of a somewhat arbitrary level of type I error,
and because risk in fisheries management is related not only
to the probability of an event but also to the severity of
possible outcomes given that event. Thus, a stock structure
hypothesis that has major management implications may
warrant consideration by the decision makers even if it has
relatively low probability.

Bayesian methods are being used increasingly to analyse
genetics data (e.g. Lulhart and England, 1999; Shoemaker et
al., 1999; Kitada et al., 2000; Pella and Masuda, 2001) and
hence to determine the relative probabilities of alternative
stock structure hypotheses. Punt et al. (2000) developed an
approach for determining the relative probability of
alternative stock structure hypotheses using allozyme data.
Although allozyme data have been widely used in studies of
stock structure (e.g. Butterworth et al., 1996; Gardner and
Ward, 1998), allozymes mutate at a slower rate than mtDNA
and microsatellites so they have lower power to detect
genetic differences (Bossart and Pashley Powell, 1998). This
paper therefore develops a Bayesian framework within
which single- and multiple-stock hypotheses can be
compared using mtDNA data. The approach is evaluated
using simulation and then, for illustrative purposes, applied
to data for North Pacific minke whales (see Fig. 2 for the
management sub-areas defined for North Pacific minke
whales).

METHODS

Basic formulation
The region to be sampled (and for which stock structure
hypotheses are postulated) is assumed to be divided into n
sub-areas. For each sub-area i, a number, Ni, of animals are
sampled. This leads to a total dataset {xi

j: j = 1, 2, …, k; i =
1, 2, …, n} where xi

j is the number of animals sampled in
sub-area i that have haplotype j, and k is the total number of

x Nj
i i

j

k

=
=

Â
1

haplotypes in the whole dataset (by definition ).

Given a random sampling scheme (as is the case for the
mtDNA data for North Pacific minke whales; e.g. Fujise
(2000)), the dataset for sub-area i can be considered to be a
multinomial sample from the population in sub-area i. If pi

j is
the proportion of animals in sub-area i with haplotype j, then
xi ~ MN(pi, Ni) and the likelihood for the dataset for

Fig. 2. Sub-areas of the western North Pacific as defined for minke whale management purposes (from IWC, 2000).
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sub-area i is given by:

(1)

where Di is the dataset for sub-area i.
It is necessary to specify prior distributions for the

parameters of model (1) to apply a Bayesian estimation
approach and hence to compute Bayes Factors. The prior
chosen for the parameters is the Dirichlet-b distribution,
i.e.:

(2)

where a are the parameters of the prior distribution.
The Dirichet-b distribution was chosen as the prior

distribution because it is the conjugate prior to the
multinomial distribution (Johnson and Kotz, 1970; Gelman
et al., 1995). It can be shown (Johnson and Kotz, 1970) that
the marginal posterior distribution for sub-area i is given
by:

(3)

The marginal posterior across all sub-areas is therefore the
product over sub-areas of Equation (3), i.e.:

(4)

Fig. 3 explores the impact of different choices for the
values for the parameters of the prior for the simple case in
which there is only one sub-area and two haplotypes. For this
example, the posterior can be summarised by the probability
of getting one of the two haplotypes. The potential for the

prior to ‘bias’ the posterior away from the probability
implied by the data alone depends on (1) the sum of a over
all haplotypes relative to the total sample size and (2) the
relative difference between the ratio of the number of
animals observed with each haplotype and the ratio of the as.
Furthermore, Equation (3) can be interpreted by noting that
including the prior is equivalent to ‘adding’ a sample where
the number of individuals with haplotype j is equal to aj 2

1 to the actual data.
Now Equations (1)-(4) are based on the assumption that

the proportion of animals in sub-area i with haplotype j, pi
j,

depends on sub-area, i.e. this is a multi-stock assumption. To
develop the marginal posterior across all sub-areas for a
single-stock model, the likelihood for the dataset for
sub-area i and the prior are given by Equations (1) and (2)
where the dependence of p on sub-area is dropped.
The marginal posterior across all sub-areas for the single
stock model is given by:

(5)

which can be shown to be:

(6)

Dealing with the parameters of the prior
The specification of the values for the parameters of the
Dirichlet-b prior (the as) can be achieved using Empirical
Bayes or Full Bayes approaches. The Empirical Bayes
approach involves pre-specifying the values for the
hyper-parameters (the as) based on the actual data (i.e. the
xs), while the Full Bayes approach involves placing a
(hyper)prior2 on the as. One immediate difference between
the Empirical and Full Bayes approaches is therefore that
only the latter deals with the uncertainty associated with the
as. Pella and Masuda (2001) apply two methods (‘maximum
prior predictive distribution’ and ‘minimum squared-error
risk’) to determine Empirical Bayes estimates for the as. In
common with Pella and Masuda (2001), it was found here
that the former method often leads to unrealistically large
(i.e. very informative – see Fig. 3) values for the as.

2 A hyper-prior is the prior distribution for the parameters of the prior
distribution.

Fig. 3. Sensitivity of the posterior distribution for the probability of selecting an animal with a particular haplotype from a population where there are
only two haplotypes. The likelihood is assumed to be binomial and the prior a beta distribution. The base-case specifications are that 15 animals
out of a sample of 20 had the particular haplotype and the parameters of the beta distribution prior = (5,5).
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Therefore, the Empirical Bayes results reported in this paper
are based on the ‘minimum squared-error risk’ method (see
Appendix 1 and Bishop et al. (1975) for details).

The hyper-prior for the Full Bayes approach needs to
satisfy the constraint aj > 0 ¶j. One widely-used distribution
that automatically imposes this constraint is the log-normal
distribution, i.e.:

(7)

where:

ā is the median of the hyper-prior for a; and
sa is the standard deviation of the hyper-prior for †n a.

The values for sa and sa are taken to be the mean and
standard deviation respectively of the Empirical Bayes
estimates for the †n a. Therefore, the Full Bayes approach
has been designed to be roughly comparable with the
Empirical Bayes approach3.

Computational aspects
Computing the Bayes Factor is straightforward if an
Empirical Bayes approach is adopted because the Bayes
Factor is simply the ratio of the marginal posteriors
(Equations 4 and 6) given the values calculated for the as. In
contrast, the Full Bayes approach involves integrating over
the hyper-prior for the as; i.e., in this case, the Bayes Factor
is defined as:

(8)

Evaluation of the numerator and the denominator of
Equation (8) cannot be achieved analytically, and
consequently a numerical integration approach needs to be
applied. Three alternative approaches to computing the
integrals were considered; two of these (Equations 9a and
9b) are based on samples from the posterior distribution for

P P

P P d

s m

s m

/

/

( | ) ( )

( | ) ( )

D

D

a a

a a aÚ
the as (i.e. the distribution defined by )

while the third (Equation 9c) relies on samples from an
approximation to that posterior distribution:

(9a)

(9b)

(9c)

where:

Î is the integral needed to compute the Bayes
factor;

w is the number of parameter vectors generated
from the (numerical representation of the)
posterior distribution;

q is the number of parameter vectors generated
from g(), the approximation to the posterior
distribution; and

Ps/m(D|al) is the value of the marginal posterior (see
Equations 4 and 6 for the multiple and single
stock marginal posteriors) for the lth parameter
vector.

Equations (9a) and (9b), due to Newton and Raftery
(1994) and Gelfand and Dey (1994) respectively, utilise a
sample of w independent parameter vectors from the
posterior distribution for the as. Equation (9c), on the other
hand, is based on a sample of q points from an approximation
to this posterior distribution (the importance function). The
function f() in Equation (9b) can be any proper density
function. For the purposes of this study, f() and g() have been
taken to be the multivariate normal distribution with
multivariate mean given by the vector amax at which the
marginal posterior attains its maximum and the
variance-covariance matrix obtained by inverting the
Hessian matrix about amax. The samples needed to apply
Equations (9a)4 and (9b) can be obtained using the Markov
Chain Monte Carlo (MCMC) (Hastings, 1970; Gelman et
al., 1995) or Sample-Importance-Resample (SIR) (Rubin,
1987) algorithms, while those needed to apply Equation (9c)
can be obtained using the SIR algorithm if the function g() is
taken to be the importance function.

A major problem associated with the application of
Bayesian methods to complex problems is how to assess
whether the algorithm used for numerical integration has
converged to the posterior distribution (Gelman et al., 1995).
Assessing convergence can be divided into two parts in the
context of this study: (a) whether the MCMC and SIR
algorithms have been run for long enough that the resultant
samples represent the posterior distributions; and (b)
whether Equations (9a)-(9c) are numerically stable. The
convergence of the SIR algorithm has been evaluated in this
paper by the proportion of replicate parameter vectors in the
sample from the posterior (typically no more then 0.5%),
while the convergence of the MCMC algorithm has been
evaluated using the magnitude of the correlation between
‘adjacent’ parameter sets (both visually and by means of
correlation coefficients) and by using the statistics contained
in the ‘Bayesian Output Analysis’ set of routines for
assessing convergence of MCMC chains5. Based on these
considerations, it was concluded that an adequate
representation of the posterior could be obtained by
conducting 5,570,000 cycles of the MCMC algorithm,
ignoring the first 15% as a ‘burn in’ period, and then
selecting every 2,000th parameter vector in the remaining
chain. This resulted in a sample of 2,500 parameter vectors
from the posterior distribution on which the integrals could
be based. The SIR results are based on 5,000,000 draws from
the importance function and 2,500 resamples from these
draws.

The results in this paper are based on Equations 9b and 9c.
Equation 9a was not used because it was found to be
numerically unstable. The lack of stability of Equation (9a)
is not surprising because a parameter vector with small
likelihood can have a large impact on the value for Î (Kass

3 Basing the values for ā and sa on the Empirical Bayes estimates
implies some use of the haplotype frequency data in developing the
hyper-prior and, as such, the ‘Fully Bayes’ approach therefore has a
slightly Empirical Bayes flavour. 

4 Equation (9a) follows from Equation (9c) taking as the sample from
the importance function a sample from the posterior, i.e. g(al) =
Ps/m(D|al)P(al)/Î.
5 http://www.pmeh.uiowa.edu/boa/.
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and Raftery, 1995; Carlin and Louis, 2000). Table 1
illustrates this potential sensitivity for the simple case in
which the prior is U[-5,5] and the likelihood is N(0; 12). For
this case, it is possible to generate samples directly from the
posterior distribution and to compute the integral over the
product of the likelihood and prior analytically. While
illustrative, the results in Table 1 indicate that improved
performance arises from larger samples from the posterior
distribution and that Equation 9a gives results which are
much more variable than Equations 9b and 9c. It would
appear that Equation 9a is only first order correct while
Equations 9b and 9c are second order correct.

Example application
The Implementation Simulation Trials for the North Pacific
minke whales (IWC, 2000; 2001a) include two hypotheses
regarding stock structure in the western North Pacific: a two
stock- (‘J’ and ‘O’) model and a three stock- (‘J’, ‘O’ and
‘W’) model6. There is support for at least two stocks in the
Western North Pacific from analyses of allele frequency
(Wada, 1984; 1991; Punt et al., 1995; Butterworth et al.,
1996), conception date (Best and Kato, 1992), mtDNA
(Goto and Pastene, 1997; 1998) and morphological (Kato et
al., 1992) information. The evidence for a ‘W’ stock is low
p-values found in comparisons involving sub-area 9 (IWC,
2001b).

The mtDNA control region sequencing data used in this
study were from minke whales taken during Korean and
Japanese coastal small-type whaling operations (1982-1987;
Goto and Pastene, unpublished data) and during the Japanese
Whale Research Programme under Special Permit in the
western North Pacific (JARPN) (1994-1999; Goto and
Pastene, 2000). Some of the analyses conducted excluded
samples from the western part of sub-area 9 (west of 1620E)
in 1995. The reason for doing this is that the results of
previous hypothesis testing based on mtDNA data showed
some heterogeneity in this particular group of animals (Goto
et al., 2000). Given these previous results, it was of interest
to examine the sensitivity of the results from the Bayesian
approach to including and excluding the data from the

western part of sub-area 9 in 1995. The results of Goto et al.
(2000) suggest the possibility of some temporal component
to the distribution of stocks in the western North Pacific.

RESULTS AND DISCUSSION

Simulation evaluation
The objective of the method developed in this paper is that
the resultant Bayes Factor should be very large if the
one-stock hypothesis is correct, 0 if the two-stock hypothesis
is correct and 1 if the data are unable to identify which stock
structure hypothesis is correct. The ability of the method to
achieve this objective can be evaluated by means of
simulation (e.g. Martien and Taylor, 2000; Taylor et al.,
2000). Detailed simulations are, however, beyond the scope
of the current paper. Nevertheless, some simulations have
been conducted to evaluate the performance of the method
given different sample sizes and true stock structure
hypotheses.

Fig. 4 plots the logarithms of the ratio of the probability of
the one-stock hypothesis to the sum of the probabilities of
the one- and two-stock hypotheses (essentially the relative
weight that should be assigned to the one-stock hypothesis)
against the logarithms of the p-values from likelihood ratio
tests comparing the one- and two-stock hypotheses7. The
results in Fig. 4 are based on applying the Full Bayes version
of the method to 20 datasets, each of which includes two
areas. The haplotype frequency data for sub-areas 6 and 7
were used as the basis to generate the simulated data for the
two areas; i.e. the two-stock hypothesis is correct for these
simulations. As expected from previous studies, the
one-stock hypothesis is rejected by both the Bayesian and
frequentist methods even for low (25 per area) samples sizes.
This result suggests that the method of this paper performs
adequately when there are major differences in haplotype
frequencies among areas.

Fig. 5 plots the relative weights that should be assigned to
the one-stock hypothesis against the p-values from a
likelihood ratio test comparing the one- and two-stock
hypotheses for the case in which both datasets are generated
from the haplotype frequency data for sub-area 7. This is a

6 More recent versions of these trials (IWC, 2001a) include the
hypothesis that there is limited interchange between the ‘O’ and ‘W’
stocks but this hypothesis is not considered in this paper.

7 More powerful versions of the likelihood ratio test based on
randomisation techniques exist, but the qualitative features of Figs 4–7
should be insensitive to using such tests.
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case in which the one-stock hypothesis is correct. The results
of the Full Bayes approach for the smallest sample size (25
per area) inappropriately indicate support for the two-stock
hypothesis (17 of the 20 relative weights are smaller than

0.5) while three of the 20 likelihood ratio test p-values were
smaller than the nominal level of 0.05. However, increasing
the sample size from 25 to 100, to 200 and then to 1,000,
results in much better performance, with increases in the

Fig. 4. Logarithms of the relative weights assigned to the one-stock hypothesis based on the Full Bayes method versus logarithms of likelihood ratio
test p-values. The results in this Figure are based on 20 simulations in which the two-stock hypothesis is correct.

Fig. 5. Relative weights assigned to the one-stock hypothesis based on the Full Bayes method versus likelihood ratio test p-values. The results in this
Figure are based on 20 simulations in which the one-stock hypothesis is correct.
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proportions of weights larger than 0.5 to 0.6, 0.8, and 1
respectively. In contrast, it is noteworthy that even for a
sample size of 1000, three of the 20 simulations led to
likelihood ratio test p-values less than the nominal level of
0.05. The reasons for the poor performance of the Full Bayes
approach for a sample size of 25 are unclear but are probably
related to the nature of the prior distribution, the effect of
which is minimised given large sample sizes.

Although performance is adequate for large sample sizes,
the results in Figs 4 and 5 suggest that the Full Bayes method
may not provide reliable results for very small sample sizes
if the one-stock hypothesis is correct. The simulations
conducted to date are, however, relatively limited and
additional work in this area is needed. Additional simulation
work should be conducted in which the pseudo datasets are
generated using either the types of operating models
considered by Martien and Taylor (2000) or those based on
coalescence simulations (e.g. Hudson, 1991). Both of these
approaches to generating pseudo datasets allow these to be
generated such that they are bounded by the limitations
imposed by evolution and gene flow, although coalescence
simulations are likely to be more efficient
computationally.

Figs 6 and 7 show results analogous to those in Figs 4 and
5, except that results are shown for the Empirical Bayes
approach (based on the ‘minimum squared-error risk’
method) and a variant of this approach in which the as are set
to ‘uninformative’ values (i.e. a = 1/k – Pella and Masuda
(2001)). The performance of the Empirical Bayes approach
(open symbols in Figs 6 and 7) is very poor for the case in
which the one-stock hypothesis is correct (Fig. 6); even with
very large sample sizes, the Empirical Bayes approach
indicates a preference for the two-stock hypothesis. The
performance of the ‘uninformative’ approach is markedly
better than the Empirical and Full Bayes approaches when
the one-stock hypothesis is correct (Figs 5 and 6). However,
its performance is less than ideal for the case in which the

two-stock hypothesis is correct (Fig. 7). Although the
‘uninformative’ approach places greatest weight on the
two-stock hypothesis when it is correct, the weight assigned
to the one-stock hypothesis is much greater than the p-value
from the likelihood ratio test 2this suggests that the
‘uninformative’ approach tends to ‘favour’ the one-stock
hypothesis. The extent to which this is actually a concern is
not entirely clear because even the ‘uninformative’ approach
indicates that the two-stock hypothesis is far more likely than
the one-stock hypothesis. A further problem with the
‘uninformative’ approach is that not all authors agree on the
values to assign to the as in order to obtain an
‘uninformative’ conjugate prior for a multinomial likelihood
(Gelman et al., 1995).

The only potential impediment to evaluating Bayes Factor
approaches to addressing stock structure questions using
simulation is their computational demands. This is not a
problem with the Empirical Bayes or uninformative
approaches as they do not involve any numerical integration.
In contrast, this is certainly potentially a major problem for
the Full Bayes approach. However, the software on which
the calculations of this paper are based has been optimised so
that roughly 10-20 Bayes Factors can be calculated in a
twelve-hour period. This suggests that a full evaluation of
even the Full Bayes approach should be feasible in short- to
medium-term.

Illustrative application of the data for North Pacific
minke whales
Table 2 lists Bayes Factors for a variety of comparisons
among sub-areas for minke whales in the western North
Pacific. Sub-area 7 comparisons are shown based on
commercial samples, JARPN samples, and commercial and
JARPN samples combined. The values for the Bayes Factor
can be interpreted in terms of the support for (or against) the
one-stock hypothesis (more positive values indicating

Fig. 6. Relative weights assigned to the one-stock hypothesis (solid dots 2uninformative prior; open symbols 2Empirical Bayes) versus likelihood
ratio test p-values. The results in this Figure are based on 20 simulations in which the one-stock hypothesis is correct.
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greater support). Table 2 indicates the qualitative strength of
evidence for the one-stock hypothesis using the scheme
developed by Kass and Raftery (1995). Results are shown in
Table 2 for the Full Bayes method (based on Equation 9c),
and the ‘uninformative’ approach. Results are not shown for
the Empirical Bayes approach given its poor performance in
Fig. 6.

Account needs to be taken of the potential numerical
uncertainty associated with the calculation of Bayes Factors
using the Full Bayes approach when interpreting the results

in Table 2. Fig. 8 shows the distribution for the Bayes Factor
for a comparison of sub-areas 7 (JARPN and commercial
samples combined) and 9 (less west 1995) that results from
changing the random number sequence used when applying
the MCMC and SIR algorithms. It is clear that the value of
the Bayes factor can be sensitive to the random number
sequence when Equation (9b) is used (it would be even more
sensitive had the Bayes Factor been based on Equation 9a)
while the results for Equation 9c are relatively insensitive to
the random number sequence.

Fig. 7. Logarithms of the relative weights assigned to the one-stock hypothesis (solid dots 2uninformative prior; open symbols 2Empirical Bayes)
versus logarithms of likelihood ratio test p-values. The results in this Figure are based on 20 simulations in which the two-stock hypothesis is
correct.
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The results, except for the comparison of sub-areas 6 and
7, are very sensitive to how the as are specified. For
example, there is very strong evidence for the one-stock
hypothesis if an ‘uninformative’ prior is assumed for the as.
This may, however, be a consequence of the ‘uninformative’
approach tending to prefer the one-stock hypothesis.
Nevertheless, it should be borne in mind that it is hard to
extrapolate from the results in Fig. 7 (where the two-stock
hypothesis is clearly correct) to the situation to the east of
Japan.

The results for the Full Bayes approach suggest that the
data generally provide little information regarding
comparison among sub-areas 7, 8 and 9. The only marked
exception to this is the comparison between sub-area 9 (less
west 95) and the data for sub-areas 7 and 8 pooled. This
result is consistent with those from a Bayesian analysis of the
allele frequency data (Punt et al., 2000) as well as with those
from previous analyses based on hypothesis testing using
allozymes (Wada, 1984) and mtDNA RFLP data (Goto and
Pastene, 1997). For all combinations of factors, the
probability that sub-area 9 contains a separate stock from
sub-area 7 decreases if the data for the west of sub-area 9 in
1995 are omitted. This result is consistent with previous
analyses based on hypothesis testing (Goto et al., 2000).

DISCUSSION

The use of Bayesian methods to analyse genetics data, while
preferable theoretically, is a relatively recent development.
A prime reason for this is that the computational
requirements of the calculations can be prohibitive.
However, the opportunities for using these methods should
increase with the advent of faster personal computers. Some
of the assumptions made in this paper (for example that the
prior for the proportion of animals in a sub-area with a given
haplotype is of the Dirichlet-b form) were made largely for
computational convenience (so that the marginal posterior
could be evaluated analytically) rather than for good
theoretical reasons. Although examining different choices
for this prior is beyond the scope of the current study,

development of more powerful computers should enable this
to be carried out in the future.

The use of the log-normal hyper-prior for the as is
relatively arbitrary. It would seem prudent to examine the
sensitivity of any results to be used for management
purposes to other probability distribution functions that have
similar properties to the log-normal (e.g. the gamma
distribution). In addition, basing the mean and coefficient of
variation of the hyper-prior on the values for the as used in
the Empirical Bayes calculations is also relatively arbitrary.
However, no more objective way to define these parameters
is immediately obvious. It should also be noted that the
illustrative simulations only considered as the case when the
two-stock hypothesis is correct, an example where there are
clear differences in haplotype frequencies. Future
simulations should consider scenarios in which the
differences are less clear.

An advantage of Bayesian over frequentist approaches is
that the former can be used to assign probabilities to
alternative hypotheses. This cannot be achieved using
frequentist techniques inter alia because the ‘effect size’ is
unknown. This problem is not removed through the
Bayesian approach. In fact, the ‘effect size’ is implicit in the
priors. Fig. 9 illustrates the ‘effect size’ in terms of the prior
distribution implied for the Fst statistic under the one- and
two-stock models (solid and dotted lines respectively).
Results are shown in Fig. 9 for two different choices for sa
(0.5 and 1.5) and two choices for the sample sizes from the
two sub-areas. As expected, there is considerable overlap
between these distributions, particularly for the lower
sample sizes and the high value for sa. High values for sa
imply a more skewed haplotype frequency distribution (a
few very common haplotypes and many rare haplotypes) due
to the prior assigning higher probability to occasional large
values for a. The distributions in Fig. 9 raise the intriguing
question of whether a Bayesian analysis could be based on
the implied prior distribution for a quantity such as Fst rather
than having to be based on the Full Bayesian analysis.

At the present stage of development, the results from Full
Bayes method should only be used for management purposes

Fig. 8. Sensitivity of the logarithm of the Bayes Factor (probability one-stock hypothesis divided by probability two-stock hypothesis) to the choice
of the random number sequence used when conducting the Monte Carlo integrals and the equation used to approximate the probability of the data.
The results in this Figure relate to a comparison of sub-areas 7 (JARPN and commercial samples combined) and 9 (less west 1995). 
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with caution. Some testing of the method has been
completed and this suggests that, when applied to data for
two stocks that differ substantially in haplotype frequency,
or when sample sizes are large and the one-stock hypothesis
is correct, performance is adequate. However, in common
with most other methods for analysing genetics data,
performance of this method has yet to be fully evaluated,
particularly for cases in which there are two stocks but their
haplotype frequencies differ only slightly.

Although the use of Bayesian methods for resolving stock
structure questions is still in its infancy, we believe that these
methods show considerable promise. For example, Pella and
Masuda (2001) developed an approach based on similar
assumptions regarding the likelihood function and the prior
for the proportion of animals with a particular haplotype to
estimate probability distributions for stock mixture rates.
Further development of the technique outlined in this paper
should provide a firmer basis for the development of
Implementation Simulation Trials. Conditioning of
Implementation Simulation Trials8 is, in some cases, already
based on a Bayesian assessment (e.g. Punt and Smith, 1999;
IWC, 2002). In fact, there is no reason (barring
computational constraints) therefore that genetics data could
not be included in the conditioning process so that the
probability of alternative stock structure hypotheses is one
outcome of this process.
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Appendix 1

The minimum squared-error risk approach to selecting values for the as

The values for the as are defined according to the
formula:

(1.1)

where:
aT is a value that minimises the expected squared-error

between the posterior means for the relative frequencies
of each haplotype and the observed relative frequency
of each haplotype; and

x̄j is the arithmetic average of the relative frequency of
haplotype j across samples:

(1.2)

Now, it can be shown (Bishop et al., 1975) that the value of
aT satisfies the equation:

(1.3)

Solving Equation (1.3) for aT and applying Equation (1.1)
provides the ‘minimum squared-error risk’ values for the
as.
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