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A Bayesian stock assessment of the eastern Pacific gray whale
using abundance and harvest data from 1967-19961
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ABSTRACT

Abundance and harvest data since 1966/67 were used to assess the eastern Pacific stock of gray whales. A Bayesian statistical method was
used to estimate probability distributions for the parameters of both a simple and an age and sex structured population dynamics model,
as well as output quantities of interest. Model comparisons using the Bayes Factor provided conclusive evidence that an additional
parameter should be used to account for unexplained variation in the abundance time series. Incorporating the additional variance parameter
decreased the precision of the estimates of the other parameters. Point estimates of carrying capacity ranged from 24,640-31,840 for the
different models, but the posterior distributions from the selected models were very broad and excluded few values. The current depletion
level (population size as a fraction of carrying capacity) was estimated to be about 0.75, with a lower 2.5th percentile of 0.36. The probability
that the population was still below one-half of its carrying capacity was estimated to be 0.21, with a corresponding probability of 0.28 that
the population was still below its maximum sustainable yield level. Quantities from which catch limits could potentially be calculated were
estimated, including current replacement yield, maximum sustainable yield and the quantity Q1 (described in Wade and Givens, 1997).

KEYWORDS: GRAY WHALE; PACIFIC OCEAN; MODELLING

INTRODUCTION

The eastern Pacific stock of gray whales (Eschrichtius
robustus) was harvested commercially from the mid-1800s
to recent times and has been harvested by aboriginals since
at least the 1600s. Although the commercial harvest no
longer occurs, an aboriginal harvest still exists (e.g. IWC,
1998, p.243). The gray whale is one of the best studied
populations of whales. The population was surveyed on its
southbound migration in 16 out of 21 years from 1966/67 to
1987/88. Three additional surveys were carried out in
1992/93 and 1993/94 (Laake et al., 1994) and in 1995/96
(Hobbs et al., 1996), making possible a reassessment of the
stock. This paper reports the results from fitting two
density-dependent models to the data. The status of the stock
relative to its equilibrium population size was estimated,
along with quantities of interest for setting catch limits for
the harvest. 

Two different population dynamics models were used: (1)
generalised-logistic; and (2) density-dependent Leslie
matrix. Model 1 is a simple model while model 2 is both age-
and sex-structured. Bayesian statistical methods (e.g. Press,
1989) were used to estimate the model parameters by fitting
the models to the abundance data. The models were
compared using Bayes factors (Kass and Raftery, 1995) to
evaluate which model best fitted the data.

Attempts to fit models to the available time series of gray
whale abundance estimates have indicated that there is a lack
of fit of the data to the model not accounted for by the
estimated variance of the abundance estimates. This is
readily apparent when the abundance estimates are
examined, as several adjacent estimates have
non-overlapping 95% confidence limits, indicating
significant differences from one year to the next (Reilly,
1992). For example, the significant increase of greater than
30% from the 1992/93 estimate to the 1993/94 estimate
(Table 1) is biologically implausible for gray whales and
suggests that the estimated CVs do not account for all of the

variance associated with the estimates of the number of
southbound migrating gray whales in each year. It is
unknown whether this additional variance is due to variance
in components of the estimation technique that are not
accounted for, or to variance in the proportion of the
population that migrates past the California monitoring site.
Therefore, a method was developed to account for this
unexplained variance by estimating a new parameter that
represents additional variance in the abundance estimates.
Adding the additional variance term to each of the two
models resulted in a total of four models being considered.

An unresolved issue regarding the eastern Pacific gray
whale is that it has not been possible to reconcile the catch
history from the 1800s with the recent time series of
abundance data in a simple way. Several attempts have been
made to project population models forwards from the 1800s

1 This paper was originally submitted as SC/48/AS8 to the 1996
meeting of the IWC Scientific Committee.
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assuming the population was at carrying capacity prior to the
start of commercial harvests in 1846, but such projections
cannot produce a trend that agrees with the recent abundance
estimates, which indicate the population roughly doubled
between 1967 and 1988 (Reilly, 1981; Lankester and
Beddington, 1986; Butterworth et al., 2002). The catch
history and current trend can only be reconciled through
fairly dramatic assumptions, such as an increase in the
carrying capacity from 1846-1988 of at least 2.5 times, an
underestimation of the historic commercial catch from
1846-1900 of at least 60%, or annual aboriginal catch levels
prior to 1846 of at least three times the level previously
thought (Butterworth et al., 2002). Although all of these
scenarios are plausible, there is little concrete evidence for
any of them. Any stock assessment based on projections
from a pre-1900 carrying capacity would involve making an
untestable assumption such as that the commercial harvest
was twice the level previously thought.

A stock assessment based on data collected since 1967,
while ignoring some important information regarding the
catch history, will not be subject to these potential problems.
Therefore, the status of the eastern Pacific stock of gray
whales has been assessed here using only the harvest data
collected since 1967. The analysis starts projecting the
population in 1967 and does not make any assumptions
about what level the population was at relative to carrying
capacity at that time.

METHODS

Available data
Abundance surveys for the eastern Pacific stock of gray
whales take place from December to February, so they are
referred to by two years (e.g. a survey from December 1995
to February 1996 is called the 1995/96 survey). Abundance
estimates (Table 1) for 1967/68 to 1987/88 were from
Buckland and Breiwick (2002). These were the same
estimates as used in Butterworth et al. (2002). Preliminary
estimates for 1992/93 and 1993/94 were from Laake et al.
(1994), while that for 1995/96 is from Hobbs et al. (1996).
The catch history prior to 1993 was obtained directly from
the IWC (Table 2), while that for 1994 was obtained from
Blokhin (1995).

Population dynamics models
Two different models were used:

Generalised-Logistic

(1)

where:

Nt the population size in year t;
rmax the maximum net recruitment rate;
Neq the equilibrium population size (or ‘carrying

capacity’); 
z the density-dependent exponent which sets the

maximum sustainable yield level (the relative
population size at which the maximum sustainable
yield is obtained); and

Ht the number of animals harvested in year t.

Density-Dependent Leslie Matrix
The population was projected as:

nt+1 = Atnt – ht (2)

where:

nt vector of population size of each age class at time t;
At the Leslie matrix in year t;
ht vector of age-specific harvests at time t.

A simplified Leslie matrix (Leslie, 1945; 1948) was used
with a total of four variable parameters. Three were elements
of the matrix: (1) sj, the survival rate of unrecruited age
classes (‘juvenile’ survival rate); (2) s, the survival rate of
recruited age classes (‘adult survival rate’); (3) ft, the
fecundity rate at time t (assumed identical for all mature age
classes); and (4) ASM, the age of sexual maturity (with the
first non-zero fecundity in the subsequent age class). The
maximum age was fixed at 60 years.

This model was identical to a usual Leslie matrix model,
except that the fecundity term was density-dependent with a
form similar to the generalised-logistic:

(3)

where:

ft the realised fecundity in year t;
fmax the maximum fecundity rate; and
f0 fecundity at a net recruitment of zero, which can be

solved directly from the other parameters.
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This model is thus identical to the model in Breiwick et al.
(1984). The population growth rate (l) associated with a
Leslie matrix using a fecundity value of ft was referred to as
lt and the population growth rate associated with ft = fmax

was referred to as lmax. Estimates of lmax were expressed as
lmax-1 so they would be comparable to the parameter rmax of
the generalised-logistic model.

The harvest kills were subtracted after reproduction
because in recent decades they have occurred in the summer,
after the calving season in the winter. In each year, the kills
were distributed to each recruited age-class according to the
age distribution in that year. Recruitment was assumed to be
knife-edge and to occur at age five. Each trajectory was
initiated with the stable age distribution associated with that
population size. In other words, the starting population size
for a trajectory was used in equation (3) to find the value of
ft associated with that population size and the particular
values for fmax, Neq and z used on that trajectory. Then the
stable age distribution was found for the Leslie matrix
composed of s, sj, ASM and that value of ft.

As the sex-ratio of the kill was not equal, two vectors of
population size were projected, one for each sex. The same
survival rates were used in the Leslie matrix to project each
vector, but, obviously, the fecundity terms were set to zero
when projecting the male population vector. The sex-ratio of
calves was assumed to be 50:50; therefore the number of
males in age-class 1 was set to be equal to the number of
age-class 1 females at each time step. The population was
assumed to have a 50:50 sex ratio at the beginning of
1968.

Additional variance term
Two additional models were specified by adding a
parameter, CVadd, to models 1 and 2 that represented
additional variance in the abundance estimates. This was
similar to the method employed by Butterworth et al. (1993).
Here, the additional variance is thought of as the unexplained
variance between annual estimates of abundance not
accounted for by the estimated variance of those abundance
estimates; note that the mechanism that causes the process
error is unknown and is not explicitly modelled here. CVadd

was parameterised as a coefficient of variation and was
considered constant across years. This implies that in any
year there was the same possibility of additional variance not
accounted for by the estimated variance of the abundance
estimates. CVadd was incorporated into the likelihood
function in each year as an additive variance term to the
abundance estimates, with the assumption that this
additional variance has a Gaussian distribution. In other
words, in any year, a new total CV was calculated as the
square root of the sum of the squares of CV(t) and CVadd

(4)

where CV(t) = S(t)/N(t). The likelihood component from that
year’s abundance estimate was calculated as usual with the
new total CV term (i.e. S(t) = N(t)CVtot(t)).

Statistical methods
A Bayesian statistical method (e.g. Press, 1989) was used to
estimate the parameters of the models and other output
quantities. The same techniques were used to investigate the
population dynamics of eastern tropical Pacific dolphins
(Wade, 1994) and spectacled eiders (Taylor et al., 1996).
The method is somewhat similar in approach to Bayesian
synthesis analyses of bowhead whales, Balaena mysticetus
(Givens et al., 1993; 1995; Raftery et al., 1995). 

Any Bayesian analysis involves integrating the product of
a prior distribution for a parameter and a likelihood function
that links the probability of the observed data to the
specification of particular values for the parameter. The
likelihood function for the parameters in a population model,
given a time-series of abundance estimates, was calculated
according to the methods reported in de la Mare (1986). In
any single year, the likelihood of an observed abundance
estimate N(t) given a specified model population size Nt is
straight forward; it is the likelihood function defined by the
assumed sampling distribution of the abundance estimate.
The sampling distribution of the abundance estimates is
assumed to be a Gaussian distribution with estimated mean
N(t) and standard error S(t) and thus the likelihood is:

(5)

Although Nt is not an explicit parameter of the model, the
model parameters uniquely determine a population
trajectory N68/69,N69/70,…N95/96. Therefore, the total
likelihood given the data is the product series of all the
individual likelihoods of the Nts (the model trajectory) given
the N(t)s (the time-series of abundance estimates).

(6)

Note that the 1967/68 abundance estimate is not used in the
likelihood calculation because it is used as a prior
distribution for the population size in the beginning of 1968
(see below).

The necessary integration was approximated by using the
Sampling-Importance-Resampling routine of Rubin (1988),
which Smith and Gelfand (1992) advocate as a particularly
useful and simple integration technique for Bayesian
statistics. In this method, values for the parameters are
randomly selected from their joint prior distribution to form
a sample set of parameter values, called qi. The likelihood of
the data given this particular qi is calculated and stored. This
is repeated, generating an initial sample of n1 qis with
associated likelihoods. This initial sample of n1 qis is then
re-sampled n2 times with replacement with probability equal
to weight qi, where:

(7)

This process forms a second sample, called the re-sample.
Rubin (1988) showed that the re-sample is a random sample
from the joint posterior distribution of size n2. Because the
initial sample is sampled with replacement, the re-sample
can contain more than one occurrence of the same set of
values. When properly implemented, this feature of the
method improves its efficiency and makes the re-sample a
better approximation of the posterior distribution than would
a random sample from the joint prior distribution of similar
size. However, if the initial sample is not large enough, the
re-sample may be overly influenced by just a few sets of
values that occur many times. Such problems can be avoided
by inspecting some characteristics of the re-sample, such as
the number of unique qis and the maximum number of
occurrences of a single qi and increasing the size of the initial
sample if necessary. In this study, values for n1 were set to
values large enough to avoid those problems and thus yield
sufficiently smooth posterior distributions. The actual value
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used for n1 varied in the different analyses depending upon
the number and kind of parameters estimated. The value of
n2 was set to 5,000 for each analysis.

The surveys occurred in the beginning of each year and
were assumed to apply to the 1+ population, as in previous
studies such as Butterworth et al. (2002). The likelihood at
any time-step t was calculated prior to reproduction and
harvest in the model (i.e. the population size at the end of
year t-1) and therefore the model population size used in
equations (1) and (2) was the sum of all males and females
in all age classes.

Prior distributions
N67/68 was the initial population size (at the beginning of
1968) in each model. The prior distribution for N67/68 was
based on the abundance estimate in that year (1967/68) and
was thus a Gaussian distribution with mean 13,012 and

standard error 893 (Table 1). For the analyses with the
additional variance term, the prior distribution for N67/68 is
dependent on the value of CVadd and was thus a Gaussian
with mean 13,012 and standard error of
CVtot(67/68)*13,012. In other words, for any particular set
of parameter values drawn from the joint prior, a value for
CVadd would be chosen first and then that value used to draw
a value from the prior for N67/68. The resulting prior
distribution for N67/68 thus represented a combination of
normal distributions with the same mean but different
variances. 

The prior distributions of the population growth
parameters in the different models (e.g. rmax and lmax-1)
were uniform distributions from 0.01 to 0.13. Preliminary
trials of the analyses indicated there was little posterior
probability below this range, which was confirmed in the
final analyses. There was some posterior probability above

Fig. 1. Population trajectories with the greatest probability for all four model combinations. Also shown are abundance estimates with 95% confidence
limits. Note that for the models with the additional variance term CVadd, the confidence limits have been re-calculated using the estimated total CV
for each abundance estimate.
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this range for some of the models, but the prior distributions
on the life history parameters of the Leslie matrix make a
value of 0.13 very unlikely for lmax-1 and so that value was
set as the upper limit. 

The ranges for the life-history parameters in the
age-structured model were set to be wide enough to
encompass what are thought to be reasonable values (IWC,
1993). The prior distribution for fmax was a uniform
distribution from 0.15 to 0.30 (parameterised as female
calves per adult female). Age of sexual maturity (ASM), with
the first non-zero fecundity in the next year, was a discrete
uniform from 5-9 years. The adult survival rate, s, was a
uniform distribution from 0.95 to 0.999. The only restriction
on the juvenile survival rate, sj, was that it be less than s. The
prior distributions for these parameters did not remain
uniform on these ranges. As mentioned above, a uniform
distribution was set for lmax-1. Then, values for fmax, ASM
and s were drawn from the prior distributions described
above. From these values, sj can be calculated (Breiwick et
al., 1984). If sj < s, this set of values was used. If sj was > s,
then fmax, ASM and s were re-drawn from their uniform
distributions but retaining the original value for lmax-1. This
resulted in non-uniform realised prior distributions for these
parameters, which were stored and were plotted along with

the posterior distributions, but retained the uniform prior
distribution for lmax-1. An explicit prior was not set for sj

because this would have resulted in two different prior
distributions being established for lmax-1 and because little
information exists regarding sj.

The prior distribution for Neq was set as uniform from
17,000 to 70,000. The lower bound was found, through
preliminary analyses, to have very little probability in any of
the posterior distributions. Therefore, the lower bound for
the prior distribution is uninformative in the sense that any
lower value could have been used instead without
influencing the results (although computation time would
increase because the value of n1 would need to be increased).
The upper bound was set to a value thought to be greater than
the greatest possible value, but it was necessarily a
somewhat arbitrary value. The historic catch information has
been used to estimate historic population size by
back-calculating from a recent abundance estimate. Between
the start of commercial whaling and 1900, approximately
15,000 whales were estimated to have been harvested. Using
this information, Henderson (1972) concluded that the
population did not exceed 15,000-20,000 at the start of
commercial whaling. However, as discussed above, Reilly
(1981) and Butterworth et al. (2002) have shown that it is

Fig. 2. Posterior probability distributions for the population size in 1967/68 (N95/96), as approximated by the posterior sample. The prior distributions
are represented as lines. For the models without the additional variance term CVadd, the prior was based on the abundance estimate from 1967/68
and was a normal distribution with a mean of 13,012 and standard error of 893. For the models with the additional variance term CVadd, the prior
was a combination of normal distributions, all with a mean of 13,012 but with a variable standard error that depended upon the prior value of CVadd,
that was used.
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impossible to project back to a historic population size and
have a trajectory consistent with the recent abundance trend
without making a major untestable assumption, such as that
commercial harvests were greater than estimated. Therefore,
the previous estimates of historic population size may be
questionable. By making certain assumptions, Reilly (1981)
was able to construct some sensible population trajectories
and concluded that a carrying capacity of 24,000 was in best
agreement with the available information in his study.
Butterworth et al. (2002) investigated a broader range of
plausible scenarios to also construct a variety of sensible
population trajectories and they found that historic
population sizes greater than 30,000 were possible.
However, the only simulations in their study which approach
a historic population size of 60,000 either assume that
commercial harvests were five times greater than estimated,
or produce trajectories that do not substantially increase
from 1967 to 1988. Therefore, a carrying capacity of greater
than 70,000 seems unlikely.

Other lines of evidence are consistent with the idea that
gray whales are currently close to their carrying capacity.
For example, Stoker (1990) concluded that the recent decline
of amphipods in one of the major feeding areas of the gray
whale could have been caused by gray whale predation.
Reilly (1992) described a recent decline in gray whale
pregnancy rates in the aboriginal catch data, although he
cautions that sampling bias could have produced this result
because of the known differences in pregnancy rates in
different areas.

The prior distribution for the maximum sustainable yield
level (MSYL) was a uniform from 0.5Neq to 0.7Neq. Values
were drawn from this distribution and then transformed into
the appropriate value for z. This creates a non-uniform prior
for z, but MSYL was the parameter of interest and so it was
most appropriate to set a uniform distribution for it.

The prior distribution for CVadd in each model was a
uniform distribution from 0.0 to 0.35. In preliminary
analyses this range was found to span the region of posterior
probability in all of the analyses. Again, this makes the prior
for CVadd uninformative in the sense that the specific limits
of this prior distribution do not affect the results. Any value
lower than 0.0 could have been used for the lower bound and
any value higher than 0.35 could have been used for the
upper bound without influencing the results. The value of 0.0
seems a sensible lower bound, as it represents the case where
there is no additional unexplained variance. Choosing an
upper bound to be a value less than 0.35 would influence the
resulting posterior distribution. However, there was no a
priori reason for choosing any particular upper bound, so
there was no justifiable reason for choosing any particular
upper bound lower than 0.35. Choosing an upper bound
greater than 0.35 would not have changed the results, but
would have increased the computation time.

Posterior distributions
The re-sampling approach to integrating the solution makes
it easy to form posterior distributions for other quantities that
are functions of the model parameters. Because the

Fig. 3. Posterior probability distributions for equilibrium population size (Neq), as approximated by the posterior sample. The prior distributions
(uniform(17000,70000)) are represented as lines.

WADE: A BAYESIAN STOCK ASSESSMENT90



re-sample of size n2 is a random sample from the joint
posterior distribution, it automatically has imbedded in it any
covariances between the parameter estimates. A probability
distribution for any function of the parameters is easily
approximated from that function calculated from the n2
re-samples. Therefore, for example, it was possible to
directly assess the population status by forming the posterior
probability distribution for the ratio of the current population
size to equilibrium population size.

Posterior distributions were calculated for several output
quantities of interest that were functions of the other
parameters. The maximum sustainable yield rate (MSYR)
was calculated as the lt-1 value associated with the MSYL,
defined in terms of the 1+ population. The maximum
sustainable yield (MSY) was calculated as the product of
MSYR, MSYL and Neq (because MSYL was parameterised
as a fraction of Neq). Current replacement yield (RY) was

calculated directly as the model population size in 1996
minus the model population size in 1995. Another catch
statistic was calculated, based on the catch control law
quantity Q1 described by Wade and Givens (1997) that was
designed to meet the intent of aboriginal whaling
management objectives. Q1 was calculated as 0.9MSY for
populations above the MSYL, as the minimum of 0.9MSY
and the product Nt*MSYR for populations below the MSYL
and as zero for populations below Pmin, the population size
below which no aboriginal catches are allowed. Pmin was
assumed to be 0.1*Neq.

Prior distributions were also calculated for the output
quantities of interest. They were simply the distributions of
these parameters in the initial sample n1. They represent the
implied prior distributions for these parameters that result
from the prior distributions specified for the parameters of
the population dynamics models.

Fig. 4. Posterior probability distributions for the ratio of population size in 1996 (N95/96) to the equilibrium population size (Neq), as approximated
by the posterior sample. The implicit prior distributions are represented as lines.
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Model comparison
The models were compared through the use of the Bayes
factor (Kass and Raftery, 1995). The Bayes factor is defined
as the ratio of the probability of the data given by one
hypothesis to the probability of the data given by a second
hypothesis:

B
pr D H

pr D H12
1

2

=
( )

( )
(8)

This has the form of the ratio of two likelihood functions, but
the densities in equation (8) are obtained by integrating, not
maximising, across the parameter space and so the Bayes
factor is not equivalent to a likelihood ratio test unless there
are no unknown parameters. In comparing models, the
different hypotheses represent different models and so the
Bayes factor is the ratio of the probability of the data given
one model to the probability of the data given a different
model. The Bayes factor is only dependent upon the
evidence provided by the data and is thus not influenced by
the prior probability of the hypotheses. When the different
hypotheses are given equal prior probability, the Bayes
factor is equal to the posterior odds, or the posterior
probability of H1, pr(H1|D), divided by 1-pr(H1|D). 

The Bayes factor is found by calculating the probability of
the data given a hypothesis, H:

(9)

Under a Monte Carlo numerical integration method, such as
Sampling-Importance-Resampling, this is estimated as:

(10)

where the qi
(H)s are the n1 initial samples from the prior

distribution. This represents the average likelihood of the
sampled parameter values (Kass and Raftery, 1995).

RESULTS

Initial samples in the numerical integration technique ranged
from 250,000 to 4,000,000 (Table 3). A re-sample of 5,000
points was drawn in each case from the initial sample,
resulting in from 1,275 to 3,905 unique points in the
re-sample. The models which did not include the additional
variance term required a relatively greater number of
iterations because the posterior distributions from those
analyses were narrower and thus a random point from the
joint prior distribution was less likely to be a point that had
any significant probability in the posterior distribution. The
initial sample sizes used for the age structured models were
large enough to result in sufficiently well determined
posterior distributions. Sample sizes larger than necessary
were used for the generalised-logistic models because the
computational speed of the simpler model allowed it.

The use of the additional variance term was decisively
supported by the Bayes factor comparisons (Table 4). A
visual explanation for this can be seen in that only one of the
confidence limits re-calculated with CVadd lies outside the
model trajectory (in 1972), while without the use of CVadd

from 6 to 7 of the confidence limits on the abundance
estimate lie outside the model trajectory (Fig. 1). The
comparison between the simple model and the
age-and-sex-structured model without CVadd resulted in

Fig. 5. Upper panel: posterior probability distributions for the population size in 1995/96 (N95/96), as approximated by the posterior sample. Note that
although there was an abundance estimate in 1995/96, these posterior distributions are different because they are conditioned on the full time series
of abundance estimates. Lower panel: posterior probability distributions for the ratio of population size in 1996 (N95/96) to the maximum sustainable
yield level (MSYL), as approximated by the posterior sample. The implicit prior distributions are represented as lines.
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marginal evidence in favour of the simple model (Table 4).
However, when CVadd was used, there was no difference
between the fit of the simple and age-structured models, as
the Bayes factor was close to 1.0.

One of the effects of the additional variance term can be
seen in the prior distribution for N67/68, which was much
broader and flatter with CVadd than without (Fig. 2). The
posterior distribution was broader also, which gave an
indication of how much less certain the trajectory of the
population was when CVadd was used.

Both analyses without CVadd estimate Neq to be within the
range 22,000-39,000 and it can be seen that the posterior
distribution falls off to zero probability quickly outside this
range (Fig. 3). However, the analyses with CVadd provide a
lower bound for Neq but not an upper bound. The posterior
distributions still have some posterior probability even at the
highest value specified in the prior, 70,000. In spite of this
large difference in the width of the posterior distributions,
the values of Neq with the highest probability (the modes of
the distributions) are all fairly similar, in the neighbourhood
of 23,000 (Fig. 3). Even the point estimates do not differ too
greatly, as the posterior medians of approximately 25,000
increase to about 30,000-32,000 (Table 5).

The point estimates of current depletion level (N95/96/Neq)
were all greater than 70% of equilibrium population size,
indicating the population is close to its equilibrium level
(Table 5b). However, the lower tail of the posterior

distribution extends as low as 30% of Neq when CVadd was
used in the model (Fig. 4), so there is still some probability
that the population is not yet above 50% of Neq (e.g. 0.21 for
the density-dependent Leslie matrix model). The specified
models do not allow for the model populations to ‘overshoot’
the equilibrium value by very much given the specified
parameter values, which explains the peak at a value of
1.0.

The 2.5th percentiles for the posterior distributions for
N95/96 ranged from about 19,000-27,000 with CVadd (Table
5b, Fig. 5). This range was narrower than the re-calculated
confidence limits (approximately 17,000-29,000) on the
abundance estimate for 1995/96 (Fig. 1), meaning that
conditioning on the entire time-series improved the estimate
of current abundance, but not by a large amount.

Without CVadd there was a probability of 1.0 that the
population was above MSYL, but under the models using
CVadd there was substantial probability that the population
was still below MSYL (Fig. 5). For example, the probability
that the population was still below its maximum sustainable
yield level was estimated to be 0.28 for the
density-dependent Leslie matrix model. As in the previous
plot, there was a peak in each distribution around the values
representing the ratio of population sizes close to Neq to
MSYL.

The posterior distribution for MSYL was nearly identical
to the prior distribution (Fig. 6). The posterior distributions
for the quantities MSY (Fig. 6) and Q1 (Fig. 7) were similar
and fairly normally distributed, with point estimates ranging
from 592-728 (Table 5c). In each case, the distributions were
much broader and dispersed for the models with CVadd. The
2.5th percentiles of the posterior distributions were 407-564
for Q1 and 468-627 for MSY (Table 5).

The widest posterior distributions for RY range from
about 50 to about 1,000 animals (Fig. 7). The low numbers
were a result of trajectories that closely approach
equilibrium, as the population growth rate approaches zero
at this level and thus RY approaches zero. The high numbers
represent trajectories far from equilibrium that thus have
growth rates on the order of 3-4% applied to a current
population size (e.g. 0.35*23,000 = 805).

Fig. 6. Upper panel: posterior probability distributions for MSYL, the maximum sustainable yield level, as approximated by the posterior sample. The
prior distributions (uniform(0.50,0.70)) are represented by lines. Lower panel: posterior probability distributions for MSY, the maximum
sustainable yield, as approximated by the posterior sample. The implicit prior distributions are represented as lines.
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Fig. 7. Upper panel: posterior probability distributions for RY, the current replacement yield, as approximated by the posterior sample. Lower panel:
posterior probability distributions for Q1, as defined in Wade and Givens (1997), as approximated by the posterior sample. The implicit prior
distributions are represented as lines.

Fig. 8. Upper panel: posterior probability distribution for MSYR, the maximum sustainable yield rate, as approximated by the posterior sample. The
implicit prior distributions are represented as lines. Lower panel: posterior probability distribution for rmax and lmax-1, the population growth
parameters, as approximated by the posterior sample. The prior distributions (uniform(0.01,0.13)) are represented as lines.

WADE: A BAYESIAN STOCK ASSESSMENT94



The posterior distributions for MSYR were all greater
than 0.02 (Fig. 8), with point estimates ranging from 0.035 to
0.047 (Table 5). This resulted because of the increase in
population size over the last 28 years in combination with the
low probability that the population is at a small fraction of its
equilibrium population size. The point estimate for rmax was
0.053 and for lmax-1 was 0.072 (Table 5), with 2.5th

percentiles of 0.031 and 0.039 respectively. The posterior
distributions for rmax and lmax-1 both had long tails on the
right (Fig. 8), which caused the median values to be greater
than values of the modes of the distributions. 

The posterior distributions for the four life-history
parameters were virtually identical to their prior
distributions. The sloped prior distributions with higher

probability at values that lead to higher growth rates were
due to the fact that lmax-1 itself was forced to have a uniform
prior distribution.

DISCUSSION

The model comparisons through use of the Bayes factor led
to the conclusion that an additional variance term should be
included in population dynamics models fitted to the gray
whale abundance data. In other words, it is clear that not all
of the variance associated with the abundance estimate has

Fig. 9. Posterior probability distributions for four of the parameters of the density-dependent Leslie matrix model with the additional variance term
CVadd. fmax is the maximum fecundity, ASM is the age of sexual maturity, sj is the juvenile survival rate and s is the adult survival rate. The prior
distributions for fmax, ASM and s were initially set to uniform distributions over the ranges shown, while the only prior restriction put on sj was that
it be less than s. The lines represent the prior distributions that resulted from forcing the Leslie matrix parameters to be consistent with a uniform
prior from 0.1 to 0.13 for lmax-1.
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been included in previous estimates. A similar conclusion
was reached by the IWC Scientific Committee in 1994,
where it was noted that ‘sampling variability was either
under-estimated or was not the only source of variation in the
estimates’ (IWC, 1995). Results are reported here for all four
combinations of population model and use or not of CVadd,
but the model comparisons clearly indicate that the two
models that incorporate the additional variance term, CVadd,
provide a better fit to the data. A robust management strategy
should therefore be based on a model assessment including
this term. Including the term CVadd, has a large influence on
the results, as without it the evidence is very strong that the
population is at a large fraction of its equilibrium and is no
longer depleted. In general the same conclusion is suggested
from the analyses with CVadd, but those analyses leave some
possibility that the population is still currently depleted.

The lower percentiles of Q1 were lower in the analyses
including CVadd, but these lower values were clearly
supported by the data and thus represent the preferred
quantities on which to base management. It can be seen that
the estimated distributions for Q1 were very close to what a
distribution of 0.9MSY would be. This resulted because of
the high probability that the population was above MSYL,
with the only difference due to the small fraction of
trajectories which were still below MSY in 1996. Q1
represents a harvest level that would allow a depleted
population to increase and allows it to increase faster the
more depleted it is (Wade and Givens, 1997). An estimate of
about 600 is thus consistent with the evidence that the
population has increased substantially under a harvest of
approximately 174 per year. Note that because there is no
probability that the current depletion level is less than 0.25
(Fig. 4), a value for Pmin as high as 0.25 could have been used
without changing the estimates of Q1.

Another way of putting a potential harvest of 600 animals
into context is to consider the available time-series of
abundance estimates, which indicates that the population
increased by approximately 3% per year from 1967/68 to
1987/88 (Reilly, 1992) while an annual harvest of
approximately 174 whales took place. If the population was
at approximately 10,000 animals in 1968 and increased at
3% per year for 20 years, it would have increased by an
average of about 400 animals per year. Given that the harvest
was about 174 per year, this indicates that the population, on
average, produced about 575 more whales each year than
would die from natural mortality. This can give some
indication of what the population could currently sustain
given the evidence of the last 28 years. 

It should be noted that a harvest level of MSY (or even
0.9MSY) will cause a population well above MSYL (such as
one close to carrying capacity) to decline. Because the gray
whale is estimated to be well above MSYL, this suggests that
a current harvest as high as the point estimates for Q1
(593-646 using CVadd) would cause the population to
decline. If continued, in theory such a harvest would cause
the population to decline to a level just above the MSYL.
Such a decline would be consistent with the specified
aboriginal management principles.

When the gray whale population was clearly thought to be
increasing (such as from 1968-1988), RY was a useful
quantity to represent the maximum harvest that the
population might currently sustain. Now that the recent
abundance estimates indicate there is some likelihood that
the population growth rate is slowing as the population
approaches its equilibrium, the quantity RY becomes less
useful for management. Obviously, if the population
stabilises, RY will go to zero. Therefore, it now becomes

important to use other quantities when assessing whether a
specified harvest level would meet the requirement of
aboriginal subsistence management.

As suggested in Kass and Raftery (1995), the posterior
distributions for the quantities of interest could be combined
across models, using the probability of each model as a
weight for each posterior distribution. In the case here, this
would probably change the results little, as such a combined
distribution would be dominated by the models including
CVadd, which give fairly similar results. The nearly equal
probability of the generalised-logistic+ CVadd, model and the
density-dependent Leslie matrix+ CVadd, model indicates
that a combined posterior would be approximately an equal
mixture of those two posterior distributions.

In conclusion, this method for accounting for additional
variance results in an analysis that reconciles the
contradiction inherent in sequential abundance estimates that
differ more than expected according to their estimated
variances. The evidence, as expressed by the Bayes factor,
supports the use of a parameter representing unexplained
variance for a robust stock assessment of the eastern Pacific
gray whale population.
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