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ABSTRACT

The feasibilty of using Kalman Filter methods as the basis for an Aboriginal Whaling Management Procedure is explored in this paper.
Adaptive Kalman Filters are used to obtain estimates of the stock size and posterior probability distributions for MSY rate (MSYR) and the
pre-exploitation stock size K. A set of catch control laws is then used on these estimates of stock size, which together with the posterior
distributions of the various combinations of MSYR and K, gives a cumulative distribution function for the strike limit. The eventual strike
limit is then determined as a pre-specified percentile of this distribution. The procedure is tested on some Evaluation Trials set by the
Standing Working Group on Aboriginal Whaling Management Procedures of the International Whaling Commission (IWC) Scientific
Committee. The estimation of a bias factor was considered and results are presented.
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INTRODUCTION

The Kalman Filter is widely used in the engineering sciences
to obtain estimates of the state of a stochastic dynamical
system with noisy observations, i.e. a system with both
‘process noise’ and ‘observation noise’. Kalman Filtering
techniques have been applied to estimation problems in
fisheries management with some success (e.g.
Gudmundsson, 1994; Reed and Simons, 1996) to estimate
stock sizes and population parameters using effort data and
catch-at-age data. It would therefore seem feasible to apply
these techniques to estimate the status of whale stocks. The
equations used to describe the population dynamics of
whales and the relation between the true stock size and
observations thereof can be written in a form which lends
itself to state estimation via Kalman Filters. Such estimation
schemes together with appropriate catch control laws might
then form the basis of an Aboriginal Whaling Management
Procedure (AWMP). The potential AWMP described here
uses the so-called Adaptive Kalman Filter (AKF) to obtain
estimates for the present stock size Nt - conditional on fixed
values of MSYR (MSY-rate), pre-exploitation population
size K and bias factor B - together with posterior probability
distribution for Nt and (MSYR, K, B) for each point in a
three-dimensional grid of discrete values of these three
parameters. Associated with each (MSYR, K, B) in the grid,
there is a corresponding catch control law. A sequence of
catch limits with associated probabilities is thereby obtained
and hence a cumulative distribution function for the catch
limit can be constructed. Fixing a percentile of this
distribution then determines the actual catch limit. This
method is therefore a combination of Kalman Filtering
techniques and Bayesian methodology.

Fishery type 2 as defined in IWC (2000a) represents cases
where substantial information exists. An example of such a
fishery is the Bering-Chukchi-Beaufort (B-C-B) Seas stock
of bowhead whales (Balaena mysticetus). A series of
abundance observations exists for this stock and
observations will probably continue to be available at regular
intervals. An AWMP proposed for a type 2 fishery must
undergo a series of simulation trials. These have been
designed by the Scientific Committee of the IWC and are
given in IWC (2000b). The trials are conditioned on the data
for the B-C-B bowhead stock, i.e. on the history of catches,

past stock estimates and parameter values. The AWMP
proposed here is fairly general and should be applicable to a
range of stocks, but the specifications - including model
equations and some parameter values - refer to an application
to the B-C-B stock.

The next section is a brief review of the ideas underlying
the discrete Kalman Filter. For further details, see for
example Brown and Hwang (1997) or Gershenfeld (1999). A
general framework is then formulated so that these methods
can be applied to the case of a whale stock with abundance
observations, followed by a fully specified model applicable
to the B-C-B stock, for which results for a set of the AWMP
simulation trials are presented. Finally, the results of some
sensitivity tests are presented and discussed.

A BRIEF REVIEW OF KALMAN FILTERING
TECHNIQUES

The Kalman Filter
The Kalman filter is designed to give an estimate of the state
of a system:

xt+1 = Ftxt+ut (1)

zt = Htxt+vt (2)

where

xt is the state of the system at time t (n-vector);
zt is the observation of the system at time t (m-vector);
ut is Gaussian white noise, ut ~ N(0,Qt) (n-vector);
vt is Gaussian white noise, vt ~ N(0,Rt) (m-vector); and
F, H are nxn and mxn matrices, respectively.

It is assumed that the process noise ut and the observation
noise vt are uncorrelated. To start the estimation process, an
estimate of the state at t = 0 needs to be specified, together
with the corresponding error covariance matrix. The
estimate of the state at time t, using data up to t-1 is denoted
by xt|t–1 and is known as the prior estimate of xt. The
corrsponding error covariance matrix at time t is:

Pt|t–1 = E((xt-xt|t–1)(xt-xt|t–1)T)

where T denotes transpose. When a new observation
zt becomes available, the estimate xt|t–1 is updated according
to:
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xt|t = xt|t–1+Kt(zt-Htxt|t–1) (3)

which is the posterior estimate of xt i.e. the estimate of the
state at time t using data up to t. Here Kt is known as the
Kalman gain at time t. Note that the term in brackets on the
right hand side is the difference between the actual
observation and the predicted observation at time t. Thus a
large difference between the actual and predicted
observations will give a large modification in the state
estimate and a small difference results in a correspondingly
small modification. The Kalman gain is given by:

Kt = Pt|t–1Ht
T(HtPt|t–1Ht

T+Rt)
21 (4)

The error covariance matrix Pt|t–1 is updated by:

Pt|t = (I–KtHt)Pt|t–1 (5)

Note that Pt|t is the error covariance matrix associated with
the updated (posterior) estimate of the state at time t.

Finally, new prior estimators of the state and the error
matrix at t + 1, are obtained by:

xt+1|t = Ftxt|t (6)

Pt+1|t = FtPt|tFt
T+Qt (7)

The Kalman gain at time t+1 can then be calculated and
hence the posterior estimate of the state at t+1 and so on.

Equations (3) to (7) comprise the recursive equations for
the discrete Kalman Filter. The particular form of the gain Kt

given by equation (4) minimises value of trace(Pt|t), i.e the
mean square estimation error. The Kalman Filter is therefore
the optimal linear estimator for systems with linear
observations and dynamics. Note that the gain decreases
with increasing observation variance R, and increases with
increasing state variance Q. The effect of the observations on
the updated state estimate will therefore depend on the
relative values of state noise and measurement noise. 

The Extended Kalman Filter (EKF)
The estimation procedure described above applies to linear
systems. In order to obtain a linear estimator of the form
given by Equation (3) for the non-linear system,

xt+1 = f(xt,t) + ut (8)

zt = h(xt,t) + vt (9)

some approximations are required. Assuming that the prior
estimate of the state at time t, xt|t–1 , is available, the function
h(x,t) is linearised about that estimate giving the Jacobian
matrix:

H
h

xt
x xt t

= È
ÎÍ

˘
˚̇ = -

∂
∂

| 1

(10)

This Ht is then used in Equation (4) for the Kalman gain. The
expression for updating the state estimate is:

xt|t = xt|t-1 + Kt(zt–h(xt|t-1,t)) (11)

The error matrix is updated using Equation (5) with Ht given
by Equation (10). The prior estimate of the state at t+1 is
obtained by:

xt+1|t = f(xt|t,t) (12)

and finally, the forward projection of the error matrix via
Equation (7) is carried out using the linearisation of f(x,t)
about the posterior estimate of xt at time t, i.e. 

F
f

xt
x xt t

= È
ÎÍ

˘
˚̇ =

∂
∂

|

(13)

Equations (11) and (12), together with (4), (5) and (7) with
F and H given by Equations (10) and (13) are the recursive
equations for the Extended Kalman Filter.

The Adaptive Kalman Filter (AKF)
Unknown parameters in the system equations can be treated
as system variables to be estimated. Alternatively, Bayesian
methodology can be combined with Kalman Filters to obtain
a posterior probability distribution of the unknown
parameters. Assume that a vector of parameters, A, is
unknown. A set of extended Kalman Filters is constructed,
one for each value of A in a discrete set {Ai:i = 1,…,l}. A
prior distribution, p(Ai), for A is given, and each time a new
observation becomes available, a posterior distribution,
p(Ai|Zt), where Zt is the set of observations up to and
including time t, is updated. This is done as follows: 

p A Z
p Z A p A

p Zi t
t i i

t

 ( | )
( | ) ( )

( )
= (14)

where the conditional distribution p(Zt|Ai), is given by
(assuming a scalar output for simplicity, i.e. m = 1, and
dropping the index on A for convenience of notation), 

p Z A
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where Ht, xt|t-1, Pt|t-1 and Rt may depend on Ai and are
obtained by the Extended Kalman Filter method. Note that a
‘small’ prediction error zt-h(xt|t-1,t), gives a ‘high’ value of
p(Zt|Ai). Finally, p(Zt) is calculated by: 

p Z p Z A p At t i i

i

  ( ) ( | ) ( )=
=
Â

1

l

GENERAL MODEL FORMULATION

It is assumed that the population dynamics and observations
are governed by the following equations:

N S N C S A
N

K
N et t t

t
z

t
ut

+ = - + - + - Ê
Ë

ˆ
¯

Ê

ËÁ
ˆ

¯̃

Ê

Ë
Á

ˆ

¯
˜

Ê

Ë
Á

ˆ

¯
˜1 1 1 1( ) ( ) (16)

Nobs
t = ev

t Nt (17)

where Nt is the total population of animals 1 year and older
(1+) in year t; Ct is the catch in year t and ut and vt are normal
random variables with zero mean and variances Qt and Rt,
respectively. This is the well-known Pella-Tomlinson (P-T)
model with the parameters: annual survival rate S;
pre-exploitation population size (carrying capacity) K; and
the resilience parameter A, which is related to MSYR by
MSYR = A(1-S)/S(z/(z+1)). Note that this is a simplification
of the usual P-T models since there is no delay in the
dynamics. Note also that the process noise enters by simply
multiplying the usual P-T function by a lognormal random
variable. This assumption might be questioned, but it enables
the dynamics to be written in the required form – as specified
in the previous section - by a logarithmic transformation. It
should be pointed out that the assumption of normality is not
strictly necessary since non-Gaussian assumptions can be
accommodated within the extended Kalman Filter. 

The state variable is defined to be x = ln(N) and the
observation z = ln(Nobs). The state and observation
equations become:

xt+1 = f(xt) + ut

zt = xt + vt
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The numbers (note that the model is one-dimensional), Ft

and Ht used in calculating the Kalman gain and updating the
error covariance matrix P (which is simply a scalar variance
now) are:
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where the linearisation is about the point x = xt|t and Ht = 1.
The possibility of biased observations can be addressed by

replacing zt = ln(Nobs
t ) with zt = ln(Nobs

t )-ln(B),
corresponding to the observation model Nobs

t = BNte
vt,

where B is the bias factor. 
Adaptive Kalman Filtering can be applied to this model by

fixing some of the parameters, i.e. z and S and letting the
resilience parameter A (or alternatively, the MSYR), the
carrying capacity K, and the bias factor B, range over a
sequence of discrete values. This gives a three dimensional

grid of values (Ai,Kj,Bk) i = 1,2,…,I; j = 1,2,…,J; k =
1,2,…,K, with IJK different sets of these parameter values.
To each parameter set there corresponds an extended
Kalman Filter and a catch control law is associated with each
filter. Whenever a new observation becomes available, the
stock estimate, xt|t-1(Ai,Kj,Bk), and the posterior probability
distribution, p(Ai,Kj,Bk|Zt), are updated for each of the IJK
parameter sets, (Ai,Kj,Bk) as described in the previous
section. Applying a catch control law corresponding to each
parameter set (Ai,Kj,Bk), to xt|t(Ai,Kj,Bk), a total of IJK catch
limits, C(xt|t(Ai,Kj,Bk);(Ai,Kj,Bk)) are obtained, together with
the associated posterior probability distribution
p(Ai,Kj,Bk|Zt), i = 1,2,…,I; j = 1,2,…,J; k = 1,2,…,K.
Arranging C(xt|t(Ai,Kj,Bk);(Ai,Kj,Bk)) in an increasing
sequence, the associated probability distribution makes it
possible to construct the cumulative distribution function
F(C) for the catch limit. Once a percentile g of this
distribution is fixed, the eventual catch limit can be
determined by solving:

F(Ct) = p(C < Ct) = g (20)

for Ct. This percentile will be used as the tuning parameter
for the procedure. The procedure is illustrated schematically
in Fig. 1.

Specification of the Base Case Model and results
The general model described in the previous section needs to
be specified further if it is to be applied to a specific stock.
What will be termed the Base Case Model is an application

Fig. 1. An overview of the algorithm for setting catch limits.
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to the B-C-B stock of bowhead whales and is defined as
follows. The two parameters which are kept fixed, S and z,
will be set at 0.99 and 2.39 respectively (this value of z
corresponds to an MSY-level (MSYL) of 0.6). The carrying
capacity K, ranges from 10,000 to 23,000 in increments of
100 and the values of the resilience parameter A correspond
to MSYR of 1%, 2%, 3% and 4%. The possibility of bias is
not considered in the Base Case Model. There are therefore
131 values of K and four values of MSYR, giving a total of
524 filters. It is assumed that the stock is at carrying capacity
in 1848 when commercial whaling began. The filters are
therefore started in that year, with initial conditions x0 = K
and P0 = 0 (note that there is no initial variance since K is
pre-specified in each filter). The state x is projected forward
by the equation:

xt+1 = f(xt) (21)

where f(xt) is given by Equation (18) and not updated until
1978 when the first observation becomes available. On the
other hand, the variance P is projected forward every year
by:

Pt+1 = FtPtFt
T + Qt = (Ft)

2Pt + Qt (22)

where Ft is given by Equation (19). Note that Ft is a scalar
since the model is one-dimensional. The variables x and P
are updated by Equations (3) and (5) respectively, whenever
a new observation becomes available. There are 10 historical
abundance observations between 1978 and 1993, and in the
simulation trials, the management procedure will be given
abundance observations in 2002, 2004 and then every five
years. To each observation there is an associated estimate of
the coefficient of variation (CV). The variance of the
measurement noise vt, is given by: 

Rt = Var(vt) = ln (1 + CV(Nobs
t )2)

In order to get an estimate of the variance of the process
noise Q, some simulations were carried out using a
simplified population model. The survey estimates were
generated using a Pella-Tomlinson model without
age-structure and without demographic stochasticity, but
with noisy observations where the noise was as specified in
IWC (2000a). Q was chosen so as to roughly minimise
prediction error in a small subset of simulation trials, which
gave Q = 1023. Note that a high value of Q will give a high
Kalman gain and hence the filter will tend to follow the
individual observations, which is not a desirable feature. The
sensitivity to the value of Q is investigated in the following
section.

There is no prior information on the values of the
parameters A and K. The prior distribution for each
parameter set (Ai,Kj), i = 1,2,3,4; j = 1,2,…,131, is
therefore assumed to be discrete uniform on the specified
grid and the first update is in 1978 when the first observation
becomes available. Let us first consider the results when the
filters are applied to the historical data, i.e. up to 1993 (they
will be continued past 1993 in the simulation trials discussed
below). Fig. 2 shows the posterior probabilities in 1993, i.e.
p(K|Z1993), for the four values of MSYR. It is clear that
although the mode is at 3% MSYR, the 1% MSYR has the
greatest probability mass. This is to be expected since the
population trajectory is less sensitive to the initial value, K,
when the MSYR is low and there is therefore a wider range of
K-values which ‘agree’ with the historical abundance data.
Initially all K values are considered to be equally likely.
Thus, although the mode of the 1% curve is lower than the
2% and 3% curves, the support of the probability density
function is much wider, giving a higher marginal probability
when integrating over all K-values. Fig. 3 shows the

evolution of this marginal probability mass function from
1978 to 1993, i.e. p(MSYR). Before 1978 the four MSY-rates
all have the probability 0.25, but by 1993 p(MSYR) are 62%,
28%, 9% and 1% for MSYR of 1%, 2%, 3% and 4%
respectively. These numbers are in fact the integrals under
the four curves in Fig. 2.

The only thing remaining to be specified in the
management procedure are the catch control laws
corresponding to each filter. The ‘H’ strike limit rule as
defined in IWC (2000a) will be used. This rule gives a strike
limit in year t by:

H Need

if N

RY if N MSYL

MSY if N MSYL
t t

t

t t

t

=
<

£ <
>

Ï
Ì
Ô

ÓÔ

Ê

Ë

Á
Á

ˆ

¯

˜
˜

min , .

.

0 2000

0 8 2000

0 9

where Needt is the prespecified level of aboriginal need in
year t and RYt is the replacement yield. All parameters refer
to the 1+ component of the population (i.e. the total number
of animals one year and older). Finally, a maximum of 20%
change in strike limits between years is imposed. 

An illustration of the AKF-method will now be given by
running it on a small subset of the trials defined in IWC
(2000b). The main specifications of the trials are given in
Table 1, but further details are found in IWC (2000b). The
results are given in Table 2. The tuning parameter g was
chosen such that the median final depletion in trial BE01 was
approximately 0.78, which is the final depletion when the
H-rule with perfect information is applied (in accord with the

Fig. 2. The posterior probability distribution p(K|Z1993) for four values
of MSYR.

Fig. 3. The evolution of the marginal probability mass function
p(MSYR|Zt) between 1978 and 1993 for four values of MSYR.
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recommendation of the IWC Scientific Committee). Only a
few key statistics are given: final depletion (D1), lowest
depletion (D2), need satisfaction (N9) and the average
annual variation (N10). These statistics are fully defined in
IWC (2000a). The results will not be discussed in any great
detail here. Suffice it to say that the stock is under-utilised in
trial BE04 and over-exploited in trials BE09 and BE12.
These results and the possible causes will be discussed in the
final section of this paper.

When the AKFs are continued past 1993, the estimated
stock trajectories and the further evolution of the posterior
probabilities will not only vary between trials but also
between each of the 100 simulations comprising each trial.
One realisation of trial BE01 is selected here to illustrate the
future evolution of p(MSYR). This is shown in Fig. 4. There
is a general downward trend in the posterior probability of
the 1% MSYR and a corresponding upward trend for the 2%
and 3% MSYR for this particular realisation. Fig. 5 shows the
true population trajectory, the estimated trajectory and the

actual observations for the same realisation. Note that the
estimate of the state x (i.e. the logarithm of the stock size) is
the sum of the stock estimates coming from each filter,
weighted by the posterior probabilities p(Ai,Kj|Zt), as
illustrated in Fig. 1. The estimated trajectory follows the
actual trajectory fairly well, in spite of a wide scattering in
the observations. 

SENSITIVITY TESTS

In order to investigate how sensitive the procedure is to the
various features which specify the Base Case Model, a few
of those specifications were varied. 

Fig. 4. The evolution of the marginal probabilty mass function
p(MSYR|Zt) over the 100-year management period for one realisation
of trial BE01.

Fig. 5. The true population trajectory, the observations and the
estimated trajectory using the Base Case version of the AKF method
for one realisation of trial BE01. 
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Firstly, the effect of a finer MSYR grid was investigated by
letting MSYR range from 0.5% to 4% with a step size of
0.5%, giving a total of 8 3 131 = 1,048 filters. Fig. 6 shows
the posterior probability distribution p(K|Z1993). The mode is
now at for 3.5% MSYR, but the greatest mass is at 0.5% and
1%. The evolution of the marginal probability mass function
p(MSYR|Zt) between 1978 and 1993 shows more or less the
same pattern as the Base Case Model, except for the
difference in resolution. This AKF model, was then tested on
the same set of simulation trials as the Base Case Model. The
value of the tuning parameter g was chosen so that the
median final depletion in trial BE01 was the same as for the
Base Case Model. It turned out that the differences were
minimal; the median values were more or less unchanged,
but the spread was slightly higher in some trials and lower in
others. In view of the small differences between the two
versions, there appears to be no reason to change the
specification of the Base Case Model by taking a finer MSYR
resolution.

Secondly, the effect of varying the process variance Q was
examined. The value used in the Base Case Model is 1023,
and here the values, 1022, 1023, 1024, 1025 were used. Note
that a large value of Q, means that the filter will place a
relatively greater weight on the observations and thus the
filters tend to follow the observed values more closely,
leading to greater fluctuations. This is illustrated in Fig. 7
which shows the same realisation as Fig. 5, but with Q =
0.01. Fig. 8 shows the posterior probabilities,
p(MSYR|Z1993), demonstrating how the MSYR = 1% filters
get a larger share as Q increases. Fig. 9 shows need
satisfaction (N9) as a function of Q for trials BE01 and
BE09. The results in the former trial are not very sensitive to
Q, but a high or a low Q value deplete the stock even further
than the Base Case Model in BE09. These results do not
provide justification for changing the value of the process
variance used in the Base Case Model.

Finally, the possibility of detecting a bias was considered.
A three-dimensional grid of filters was used; that is filters
with a bias factor of 0.67, 1.0 or 1.5 were included, which
gave a total of 4 3 3 3 131 = 1,572 filters. This version of
the AKF-method was then applied to trials BE01, BE03 and
BE04, which are trials with bias factors of 1.0, 1.5 and 0.67
respectively. A slight modification was made to the trials in
that it was assumed that the historical observations were also
biased; that is the historical observations were multiplied by

the bias factor relevant to that trial and those numbers were
then provided to the management procedure. This was done
for reasons of consistency, since it is unlikely that future
observations are biased when past ones are not. This change
does in fact make the trials ‘harder’ since the jump in the bias
factor helps in identifying a bias case. The results are shown
in Fig. 10. Note that need was almost fully satisfied in BE01
and BE03 with the Base Case Model (but with the 5th
percentile rather low in the former), but there was
considerable under-utilisation in BE04. The results in trial
BE01 for the version with bias filters are better than for the
Base Case version since the median need is almost the same,
but the 5th percentile is much higher; trial BE03 results are
almost unchanged, but there is great improvement in BE04
where nearly full need satisfaction is achieved as opposed to
only 63% for the Base Case Model. This particular grid of
filters only includes cases with a constant bias and the
possibility that the bias may be changing through time is not
considered. This scenario is addressed in trials BE09 and
BE12 where it is assumed that the bias in the historical
(1978-1993) observations increased. The AKF with bias
filters performs worse than the Base Case Model in trial
BE09 where the stock is more heavily depleted (Fig.10c).
The marginal posterior probabilities for the 12 combinations
of MSYR and bias factor after the 100-year management
period are shown in Fig. 11 for one realisation of BE01 and
BE03. It is clear that those probabilities are highest for the
correct bias factor. These results are therefore very

Fig. 6. The posterior probability distributions p(K|Z1993), for eight
values of MSYR.

Fig. 7. The true population trajectory, the observations and the
estimated trajectory using the AKF method with process variance
equal to 0.01 for one realisation of trial BE01.

Fig. 8. The marginal probabilty mass function p(MSYR|Z1993) for four
different values of the process variance Q. 
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Fig. 9. Comparison of need satisfaction (N9) in trials BE01 and BE09 for four different values of the process variance Q.

Fig. 10. Need satisfaction (N9) in trials BE01, BE03 and BE04 for the Base Case Model (a) and the version with bias filters (b). Final depletion (D1)
in trial BE09 for Base Case Model and the bias filter version (c). Note the different scales on the vertical axis in (a) and (b).

Fig. 11. One realisation of the marginal probabilty mass function p(MSYR|Zt) after 100 years of management for BE01 (left panel) and BE03 (right
panel).
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promising and give some cause for optimism that a bias in
the data may in fact be correctly identified by the
AKF-method. 

DISCUSSION
The results of the set of trials presented in Table 2 show
adequate or good performance in all except BE04 (low need
satisfaction), BE09 and BE12 (too much depletion). Note
that the final depletion in BE06 is quite acceptable since the
MSYL is 0.4. The poor need satisfaction in BE04 is due to the
fact that abundance observations are downwards biased by a
factor 0.67. The performance in this trial can be greatly
improved by including a bias factor in the set of filters (cf.
Fig. 10). Trial BE12 is inherently difficult: low MSYR,
positively biased observations and underestimated CVs. In
fact, it may not be possible for a management procedure to
perform adequately in this trial and simultaneously attain an
acceptable level of need satisfaction in the other trials. Trial
BE09 is a low MSYR trial, but it should be possible get a
reasonable performance by the AKF-method. The 1% MSYR
has the largest share of the posterior probability
p(MSYR|Z1993), about 62%. This fraction will generally
decrease over the 100-year management period, albeit rather
slowly. It would therefore seem that the strike limit is set
more or less in accordance with the MSYR = 1% case.
However, the particular tuning chosen requires a tuning
parameter g = 0.75. Thus, g is larger than p(MSYR = 0.01)
which means that the eventual strike limit will be somewhat
higher than appropriate for the 1% case. It may therefore be
worthwhile to explore other tunings.

The sensitivity tests carried out in this paper provide no
reasons for changing the Base Case version of the
AKF-method, except possibly to add the third dimension to
the grid of filters, i.e. to include bias filters. The preliminary
results in this direction are promising and this possibility is
worth investigating further. However, including filters with
constant bias may lead to a deterioration in performance in
scenarios where the bias is changing with time as illustrated
in Fig. 10c. An obvious way of attempting to address this
problem is to add filters with a changing bias and this may be
worth exploring further. However, one must be careful not to
let the set of filters mimic too closely the trial set. Some
separation between the two sets must be maintained.
Introducing a filter to correspond to each trial goes against
the philosophy behind the process of developing a
management procedure. Ideally, the trial details should not
be known to the persons developing the management
procedure. 

The value of the process variance used in the AKF-method
is not based on any knowledge of whale population
dynamics. Rather, Q is to be regarded as a parameter, which
should be set with improved trial performance in mind. It
should however, be borne in mind that the Kalman Filter
gives less weight to the model and more weight to the
observations when Q is large. The filter may therefore
disregard the model more or less; it can not distinguish
between the different MSY-rates for example, and the strike

limit is therefore set on the basis of observations alone. This
may be the main explanation for the behaviour in Fig. 9. The
need satisfaction in BE01 decreases with Q, but increases in
BE09. The former is a 2.5% and the latter a 1% MSYR trial.
The filters are less able to discriminate between 1% and
2.5% as Q increases and the catch levels in the two trials will
therefore approach each other.

Some preliminary investigations of the sensitivity of the
results to the population model used in the filters have been
made using different models, for example a model with
delay in the dynamics, (Dereksdóttir and Magnússon, 2000)
and a model that finds the K that best fits the historical data
for pre-specified values of MSYR, thus giving pairs of
[MSYR,K], and thereby a one-dimensional grid of filters. The
results of those tests were not dramatically different from the
ones presented here, but performance was not improved in
general. It should also be noted that the model of the stock
dynamics used in the AKF-method is not the same as that
used to generate the data in the trials. The method is
nevertheless fairly successful in tracking the actual
trajectory (an example is given in Fig. 5). Other variations of
the AKF-method were also investigated, but this will not be
discussed here. Suffices to say, that the model presented here
as the Base Case Model gave the best overall performance of
all the different versions tried, except possibly for the
version of the AKF-method with bias filters. Exploring this
version further is a future task. Other tasks for the future, are
to explore whether performance can be improved by
amending the catch control laws and to look at the sensitivity
of the results to the values of the fixed parameters z and S.
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